
Just-in-time compiler for the Modelverse

Jonathan Van der Cruysse

April 10, 2017

1 Introduction

The Modelverse is a self-describable, multi-paradigm modeling environment [9] that consists of two
main components: the Modelverse State, which stores all data in the Modelverse as a graph, and the
Modelverse Kernel, which executes instructions stored in the State.

The semantics of Modelverse instructions are expressed as graph transformations on the State’s graph
and the reference Kernel relies on an interpreter that executes these transformations exactly.

That design has the advantage of enforcing a strict separation between the Kernel and the data it
operates on, which helps the Modelverse scale to very large amounts of data. However, the graph-
transformation–based approach to instruction interpretation results in lackluster run-time performance:
computing the twentieth Fibonacci number using a recursive function is almost 2500 times slower than a
similar Python implementation.

This report introduces and details a drop-in replacement for the reference Modelverse Kernel. The
new Kernel relies on just-in-time (JIT) compilation to achieve substantially higher run-time performance
than the previous Kernel.

For instance, a representative simulation benchmark is approximately 37 times faster when the new
Kernel is used.

The new Kernel includes three new execution engines for Modelverse instructions:

• Bytecode IR interpreter is an optimized interpreter implementation that pre-parses the Modelverse
instruction graph to deliver run-time performance that is superior to the legacy interpreter.

• Baseline JIT is a JIT compiler that quickly generates naı̈ve Python source code. It eliminates the
overhead associated with the interpreter loop and performs some simple optimizations.

• Fast JIT is another JIT compiler that performs more powerful optimizations on an intermediate
representation (IR) based on a control-flow graph (CFG) in static single assignment (SSA) form. It
aims to produce faster code than the baseline JIT, though it does this at an admittedly slower pace.
That is, it reduces run-time but demands more compile-time.

These execution engines are not mutually exclusive: a number of adaptive JIT configurations will
make use of them all. The adaptive JIT assigns a variable temperature to each function and switches to
a different execution engine for a given function whenever the temperature counter for that function
exceeds a threshold.

A number of different initial function temperature heuristics are examined. Each heuristic strikes a
different balance between compile-time and run-time by guessing the initial temperature of functions.

The structure of this report is as follows: first, some background information about the Modelverse is
provided (section 2), then the general design of a Modelverse Kernel with JIT compilation is discussed
(section 3). The bytecode IR interpreter (section 4), baseline JIT (section 5), fast JIT (section 6) and adaptive
JIT (section 7) are subsequently detailed in that order.

After using benchmark results to compare the performance of the reference and JIT Kernels (section
8), a comparison is made of the techniques used by the new Kernel and those employed by other virtual
machines that rely on JIT compilers, such as PyPy, LLVM and WebKit. (section 10)

1

2 Background: the Modelverse

The Modelverse specification describes the Modelverse as “a self-describable environment for multi-
paradigm modelling.” [9] With the purpose of just-in-time compiling code for the Modelverse in mind, I
find it useful to think of the Modelverse as a virtual machine that emphasizes scalability above all else.

There are two main components to the Modelverse: the Modelverse State (MvS) and the Modelverse
Kernel (MvK). [8] These components are both necessary to run the Modelverse, but they can be
implemented and run separately, using a computer network to communicate. Figure 1 illustrates such an
architecture.

MvSMvKMvI

aPetriNet

MMCL

PetriNet

Logical

In-Memory
 Objects

Relational
Database

Cloud

RDF

Representation

PTM

Physical

Comm

Figure 1: An illustration of a Modelverse implementation where the Kernel and State are separate entities
that communicate over a medium. Courtesy of the Modelverse specification. [9]

Note that, for performance reasons, the current Modelverse implementation, as discussed in this
report, does not use network communication to connect the Kernel and State. Instead, these components
are both implemented in a single Python software system. A server manages both the Kernel and the
State, as well as any communication between them. It also accepts input from and sends output to its
clients.

2.1 Modelverse State

In the Modelverse, all data is represented as a graph. Nodes in this graph may contain primitive values.
Primitive value types include: integers, floating-point numbers, strings, Booleans and Modelverse
instruction types. Edges can connect both nodes and other edges.

Some nodes are given special meaning by the outside world: for example, the Modelverse State
contains a single root node. Nodes that are reachable from said root node are considered to be live: they
are part of the graph that contains the Modelverse’s data. Others are not, and are therefore candidates
for deletion by the Modelverse’s garbage collector.

The Modelverse State offers a simple interface with which the Kernel may interact. This abstraction
allows for multiple implementations of the Modelverse State to exist without requiring any changes to
the remainder of the Modelverse infrastructure.

For example, while the current Modelverse State uses an in-memory data structure, an alternative im-
plementation stores the graph in a relational database instead. Switching between State implementations
does not require any changes to the Modelverse Kernel, as the Kernel is blissfully unaware of how the
State is implemented.

The State has data storage requirements, but virtually no computation requirements. It does not
perform any computation on its own and does not assign a meaning to the data in the graph it manages.

2.2 Modelverse Kernel

The Modelverse Kernel is a tool that manipulates the Modelverse State by executing instructions that are
themselves defined in the State.

Its requirements are therefore the opposite of the State’s: it needs ample computation resources to
work efficiently, but requires little data storage to function correctly.

2

Functions in the Modelverse are nothing more than subgraphs in which nodes contain special values
called actions. An interpreter can then execute these nodes by iterating over them and performing the
actions they contain.

The Modelverse specification [9] describes this process in detail and a simple example has been
included here.

2.2.1 Interpreting a constant instruction

A constant instruction is a conceptually straightforward Modelverse instruction: it replaces the target
of the current stack frame’s "returnvalue" edge with the node pointed to by the constant instruction.
Other instructions can consume the constant instruction’s result by inspecting the "returnvalue" edge
after the latter instruction has been executed.

Figure 2 expresses this as a graph transformation rule. Transformation rules are applied in-place.
Both black and blue (dotted) nodes and edges must be present for the transformation to match, blue
(dotted) nodes and edges are deleted by the transformation, and green (bold) nodes and edges are created
by the transformation.

If there were a red node or edge in the transformation rule, then the rule wouldn’t be applicable if a
matching edge existed in the graph it is tested against.

username

’frame’

’returnvalue’

’returnvalue’

’init’

’phase’

’finish’

’phase’

Const

’IP’

’node’

Figure 2: Constant access rule. Image courtesy of the Modelverse specification. [9]

The Kernel interprets instructions by repeatedly finding a matching graph transformation rule and
applying it. The transformation rules are defined in such a way that exactly one of them is applicable at
any given time.

The unique applicability of transformation rules is in part because of how they are defined and in
part because the Modelverse State’s root node is used as pivot in the transformation rules. In figure 2,
the root node is expressed as the topmost node.

2.3 Server

The Modelverse runs on a server to which clients may connect. The server manages both the Modelverse
State and the Kernel.

Additionally, it also handles any and all communication between the Kernel and the State. This is
accomplished by implementing functions in the Kernel as Python generators. A request for the State to
perform some action and produce some result is represented as a yield-expression.

For instance, the statement below requests the State to create an empty node (via a CN request) and
a node containing the string "Hello, world!" (by issuing a CNV request). The State’s reply is then
unpacked into two distinct variables.

3

Listing 1: An example Modelverse State request
node1, node2 = yield [("CN", []), ("CNV", ["Hello, world!"])]

Note that the request, encoded as a yield expression, does not interact with the Modelverse State
directly; it instead unwinds the Kernel’s call stack until control is returned to the server. The server then
instructs the State to comply with the request, restores the call stack and feeds the State’s reply to the
Kernel.

2.3.1 Nop: a special kind of request

In addition to Modelverse State requests, the server also accepts yield None requests. I have dubbed
these requests nops – which is short for no-operation – because they (should) make no observable changes
to the current state, at least from the Kernel’s perspective.

When the Kernel issues a nop, the Kernel’s call stack is unwinded as if a Modelverse State request
had been produced. When the server then sees that a nop has been issued, it has the opportunity to
interrupt the Kernel’s current thread of execution and do something else.

At the time of writing, a nop may give rise to the following actions in the server:

• Task switching. A nop is an opportunity for the server to run a different task. This is a form of
software task scheduling which enables the server to serve multiple clients simultaneously.

• I/O. Nops allow the server to receive input and send output.

• Garbage collection. All nodes that are reachable from the root node are considered live, and any
other nodes are considered dead. The garbage collector routinely deletes all dead nodes, and a nop
indicates that a garbage collector (GC) safe point has been reached: any nodes that might be used by
the Kernel in the future have at such a point been connected to other nodes in a way that makes
them live.

These services are similar to those provided by operating systems and virtual machines. That’s no
coincidence. The Modelverse server’s job is to manage a universe of data on which computations are
performed, and that’s highly similar to what an operating system does.

But the server cannot perform its services without cooperation from the Modelverse Kernel, which
needs to give the server sufficient opportunity to perform its tasks. This cooperation takes the form of
periodically issuing a nop. For instance, the reference interpreter issues one nop after each instruction
phase it completes.

The reference interpreter’s nop scheme was originally just a way to let the server know when an
instruction had been completed. This allowed the server to plan its services, including I/O and garbage
collection, in a way that made instructions atomic.

Nops have since evolved into an independent concept, separate from instruction completion.

3 A Modelverse Kernel with JIT compilation

3.1 Problem statement

Before a JIT compiler for the Modelverse was built, the Kernel relied exclusively on an interpreter that
fairly rigidly implemented the graph transformations specified in the Modelverse specification. This
design made sure that the Kernel did exactly what the specification mandated: graph transformations as
defined by the specification were converted directly to Modelverse State operations.

The downside of a graph-transformation–based interpreter was that it incurred quite a bit of overhead,
which made Modelverse programs excessively slow to the point that they were at times near-unusable.

Perhaps an apples-to-oranges comparison might work to drive this point home. Naively computing
the twentieth Fibonacci number in Python by using the function from listing 2 takes about 0.015 seconds.
When the reference Modelverse Kernel is used to compute the twentieth Fibonacci number using the
function from listing 3, this number shoots up to about 37.287 seconds. That’s a whopping ∼2500 times
slower than the Python implementation.

4

Listing 2: A Python Fibonacci function
def fib(n):

if n <= 2:

return 1

else:

return fib(n - 1) + fib(n - 2)

Listing 3: A Modelverse action language Fibonacci function
Integer function fib(param : Integer):

if (param <= 2):

return 1!

else:

return fib(param - 1) + fib(param - 2)!

3.2 Cause of the problem

As hinted in the previous section, the root cause of the reference Modelverse Kernel’s lackluster
performance is the fact that it translates instructions directly to graph transformations. This direct
translation scheme results in a lot of unnecessary and relatively expensive Modelverse State requests.

To illustrate this, let’s take a closer look at how constant instructions are implemented. A constant

instruction produces a constant node as result. The 1 and 2 literals in listing 3 are implemented as
constant instructions. Now consider listing 4: the reference Kernel’s implementation of the constant

instruction’s transformation rule, as specified by figure 2 on page 3.

Listing 4: How the reference interpreter handles a constant instruction
def constant_init(self, task_root):

task_frame , = yield [("RD", [task_root , "frame"])]

phase_link , returnvalue_link , inst = yield [

("RDE", [task_frame , "phase"]),

("RDE", [task_frame , "returnvalue"]),

("RD", [task_frame , "IP"])

]

node, new_phase = yield [

("RD", [inst, "node"]),

("CNV", ["finish"])

]

_, _, _, _ = yield [

("CD", [task_frame , "phase", new_phase]),

("CD", [task_frame , "returnvalue", node]),

("DE", [returnvalue_link]),

("DE", [phase_link])

]

There are three steps to the logic in listing 4:

1. First, the Modelverse State is queried for information pertaining to the current stack frame.

2. Then, the constant instruction’s constant node is read from the instruction. This is the node, =

yield [("RD", [inst, "node"])] step.

3. Finally, the current stack frame is updated. This includes setting the "returnvalue" edge to the
constant node that was loaded. Other instructions can later on retrieve the node pointed to by
"returnvalue".

5

In total, listing 4 performs ten Modelverse State requests. That’s a lot of work to load a constant node
and make it the result. All of that is necessary because the reference Kernel relies exclusively on the
Modelverse State for its interpreter data structures.

And that’s not without its advantages: storing everything in the Modelverse State makes it easier for
applications to inspect and/or modify the interpreter’s data structures.

However, it is inefficient in the common case where we just want the interpreter to run a function.
Out of the three major steps in listing 4, only the second step cannot be accomplished by anything other
than a State request. All other operations update the reference interpreter’s Modelverse State–based data
structures, and can be elided by using specialized data structures that do not require any communication
with the State.

3.3 High-level approach

To reduce the Modelverse’s performance handicap, just-in-time (JIT) compilation was considered as a
solution.

It was relatively clear from the beginning that the existing Modelverse Kernel could not simply be
“replaced” by a JIT Kernel, as some functions were mutable.

Moreover, the Modelverse State has no mechanism to notify the Kernel when specific nodes are
changed. This implies that there is no way to be sure if a mutable function has changed except for
verifying the entire function body before a call to a mutable function. That avenue was quickly abandoned
as it would add unacceptable overhead to function calls.

Instead, a new Modelverse Kernel was conceived that would include a modified version of the
reference interpreter to run mutable functions, along with a JIT compiler for non-mutable functions.

This design was motivated by the fact that the latter category of functions consists of an overwhelming
majority compared to the former, so any overhead incurred by making the reference interpreter responsible
for mutable functions would be negligible.

Rather than building a single JIT compiler, a number of different execution engines were constructed
for the JIT Kernel. These include a bytecode IR interpreter, a baseline JIT, a fast JIT and an adaptive,
tiered JIT. The latter uses the other execution engines as “tiers” based on function temperature, which is
a combination of the number of times a function is run and an initial temperature as computed by a
heuristic.

A given function will be compiled at most once by each execution engine. The compiled function is
then re-used by whenever a call to said function appears.

The execution engines that have been briefly described here are elaborated on separately in their
respective sections.

4 Bytecode IR interpreter

The bytecode IR interpreter is an optimized interpreter that was designed from the ground up to
do significantly less bookkeeping than the reference, graph-transformation–based interpreter. This is
accomplished by using specialized data structures and by relying on pre-parsed bytecode IR for functions
the interpreter knows won’t change.

This puts it somewhere in between a “true” interpreter and a JIT. Like a JIT compiler, it performs some
work upfront by parsing instruction graphs, but unlike a JIT compiler, it does not generate any code.

Listing 5 includes the bytecode IR interpreter’s implementation of the constant instruction.

Listing 5: How the bytecode IR interpreter handles a constant instruction
def interpret_constant(self, instruction):

"""Interprets the given ’constant’ instruction."""

self.update_result(instruction.constant_id)

raise primitive_functions.PrimitiveFinished(None)

The logic in listing 5 is significantly simpler than the graph transformation specified in listing 4. In
fact, the bytecode IR interpreter no longer requires any interaction at all with the Modelverse State to

6

interpret a constant instruction.
The 100% reduction in State requests achieved for constant instructions is not representative of

the bytecode IR interpreter’s implementation for every instruction, but it does exemplify that a lot of
overhead can be eliminated by using specialized data structures. Specifically,

• the stack frame subgraph used by the reference interpreter has been replaced by Python functions
and generators,

• the "returnvalue" edge has been replaced by an attribute of the bytecode IR interpreter class,
which is updated by calling the self.update result function, and

• the load of a constant instruction’s "node" value has been replaced by attribute access; the bytecode
IR parser is clever enough to load the "node" value in advance, so the interpreter doesn’t have to
perform a request at run-time.

4.1 Performance

By virtue of being a well-optimized implementation, the bytecode IR interpreter is faster than the
reference interpreter.

This can be observed by capturing the run-time of a benchmark when the bytecode IR interpreter is
enabled and comparing that to the run-time of the same benchmark under the reference interpreter.

Figure 3 does just that for a simulation benchmark, which is considered to be representative for the
type of workload that the Modelverse is expected to handle. The bytecode IR interpreter is approximately
7.7 times faster on average for this benchmark.1

Interestingly, the bytecode IR interpreter has a large relative standard deviation compared to the
other Kernel configurations: the bytecode IR interpreter’s relative standard deviation for this benchmark
is about 18%. All other Kernel configurations, including legacy-interpreter, for the same benchmark
have a relative standard deviation below 5%.

This oddity has thus far not been explained, and may warrant further examining.
Note that the bytecode IR interpreter is an optimized, but not an optimizing implementation: it remains

constrained by the exact semantics of individual instructions and it still needs to walk the bytecode IR
graph during execution.

5 Baseline JIT

The baseline JIT is a step up from the bytecode IR interpreter. It compiles Modelverse functions to
Python generator functions. This approach is more efficient than the approach taken by the bytecode IR
interpreter because it does away with the need to step through the bytecode IR graph.

5.1 Bytecode IR to tree IR

The baseline JIT’s compilation pipeline is intentionally simplistic: it generates a tree-based intermediate
representation aptly called tree IR. The design and structure of tree IR make it possible to convert it
directly to Python source code.

Every node in the bytecode IR graph is converted to one or more tree IR nodes in a highly formulaic
fashion. Python source code is subsequently generated from the constructed tree IR.

Note that the bytecode IR graph which the baseline JIT converts to tree IR is actually the same type of
graph that is used by the bytecode IR interpreter. This implies that it’s possible to have the bytecode IR
interpreter interpret this graph for a while before passing it to the baseline JIT for compilation.

1All benchmarks in this report were run ten times for each configuration on a machine with an Intel R© CoreTM i7-6700K processor
clocked at 4.00GHz and 15.6 GiB of RAM. Unless otherwise stated, PyPy 5.4.1 running on Ubuntu 16.10 was used to run the
benchmarks.

7

le
ga

cy
-i

nt
er

pr
et

er

by
te

co
de

-i
nt

er
pr

et
er

0

500

1,000

1,291.62

167.22

0 1.29

Ti
m

e
[s

]

compile-time total-runtime

Figure 3: Comparison of reference interpreter and bytecode interpreter performance on a single simulation
benchmark. The “compile-time” metric is the amount of time it takes to construct the bytecode IR graph.

5.2 Tree IR optimizations

The baseline JIT can also perform some simple optimizations on tree IR before generating Python code.
These optimizations include:

• Constant folding. Unary and binary expressions that operate solely on literals can be replaced by
the result they compute. Similarly, if-then-else nodes can be replaced by either the then or the
else branch if the condition is a literal.

• Performing reads at compile-time. The Modelverse State allows for nodes and edges to be created
and deleted, but the values contained by nodes are immutable. The baseline JIT takes advantage
of this by executing read-value (RV) Modelverse State requests at compile-time if the node whose
value is read turns out to be a literal.

• Replacing calls to intrinsics by specialized nodes. Some functions are well-known by the JIT.
These functions are called intrinsics and calls to them can be replaced by optimized implementations.

For example, addition is encoded as a call instruction that invokes the integer addition function.
Whenever the baseline JIT encounters a call to said function, it replaces the call by a simple binary
expression.

• Bundling Modelverse State requests. Unlike the aforementioned tree IR optimizations, this
transformation is applied during code generation. When two or more consecutive Modelverse
requests appear that do not depend on each other, then they are bundled into one Modelverse
request.

For example, consider the following requests.

node1, = yield [("CN", [])]

node2, = yield [("CNV", ["Hello, world!"])]

They don’t depend on each other, so they can be bundled into one request.

8

node1, node2 = yield [

("CN", []),

("CNV", ["Hello, world!"])

]

The bundled request incurs less overhead than the individual requests because they reduce the
number of times that the call stack is unwinded and re-winded to accommodate a Modelverse State
request.

Furthermore, bundling requests imply less communication between the Kernel and State. That
doesn’t matter much for a shared-memory Modelverse implementation, but could be helpful for
Modelverse implementations that store data remotely.

5.3 Nop and GC root insertion

5.3.1 Nop insertion

The interpreters’ nop scheme is simple: they emit a nop after each instruction.
Unfortunately, this approach does not scale well for a JIT: under this scheme, nops become increasingly

costly relative to the total execution time of a function call because the amount of nops and the cost of a
single nop remain constant as the execution time of the remainder of the function becomes lower.

In other words: porting the interpreter nop scheme to JITs will turn nops into the program’s bottleneck
as function bodies are optimized increasingly well.

A new nop scheme was created for the JIT to solve this problem: JIT-compiled code includes nops on
loop back-edges, and nowhere else.

This model relies on the assumption that Modelverse programs spend enough of their time in loops
and hence produce enough nops to keep by the server alive. That turned out to be the case in every
Modelverse program that was tested. Modelverse libraries tend to rely on iteration rather than recursion
for control-flow constructs that have no clear upper bounds on their trip counts.

A hypothetical while loop includes nops as per the example in listing 6.

Listing 6: An example that shows where nops are placed.
while condition:

if other_condition:

‘continue’ is a type of loop back-edge,

so a nop is placed here.

yield None

continue

if yet_another_condition:

‘break’ does not imply a loop back-edge,

so no nop is placed here.

break

Nop just before continuing to the next iteration.

yield None

The obvious consequence of this scheme is that compiled functions will trigger fewer nops, but this is
largely compensated by improvements to function run-times: running a program produces fewer nops
when the JIT is enabled, but the number of nops per unit of time remains sufficiently high to keep the
server responsive.

5.3.2 GC root insertion

One of the consequences of inserting nop instructions is that garbage collection may occur during the
execution of JIT-compiled code.

9

Special care must be taken to make sure that nodes which will be used in the future by compiled functions
are promoted to live nodes if a nop may be encountered between the points of their definition and their
last use.

For example, consider the following situation in listing 7.

Listing 7: An example that contains an unfortunately placed nop.
def compute_15(**kwargs):

Create a node with value ‘10’.

a_node, = yield [("CNV", [10])]

Create a node with value ‘5’.

b_node, = yield [("CNV", [5])]

Issue a nop.

yield None

Retrieve the values in ‘a_node’ and ‘b_node’, add them.

a_val, b_val = yield [("RV", [a_node]), ("RV", [b_node])]

Wrap the result in a node and return it.

result_val , = yield [("CNV", [a_val + b_val])]

raise PrimitiveFinished(result_val)

Recall that a nop may cause the garbage collector to kick in and delete nodes which are not live.
Neither a node nor b node in the example above are live, because they are not connected to the Modelverse
State’s root node. The consequence is that a node and b node might be deleted before they are used.

This is problematic, but not unique to the Modelverse Kernel. Virtual machines that include a garbage
collector work around this problem by inserting garbage collection roots: instructions which mark values
as live for the remainder of their lifetimes.

The Modelverse Kernel JIT has its own variation of a garbage collection root: per function call, a
node is created that is (indirectly) connected to the Modelverse State root node and the function’s local
variables are connected to that node.

Applying this technique to the previous example gives us the program in listing 8.

Listing 8: An amended example that protects nodes from the nop.
def compute_15(**kwargs):

Create a node to which local variables can be connected.

gc_root_node , = yield [("CN", [])]

Connect the ‘gc_root_node’ to ‘task_root’, which is

always live.

gc_root_edge , = yield [

("CE", [kwargs["task_root"], gc_root_node])]

Create a node with value ‘10’.

a_node, = yield [("CNV", [10])]

Make ‘a_node’ a GC root.

yield [("CE", [gc_root_node , a_node])]

Create a node with value ‘5’.

b_node, = yield [("CNV", [5])]

Make ‘b_node’ a GC root.

yield [("CE", [gc_root_node , b_node])]

Issue a nop.

yield None

Retrieve the values in ‘a_node’ and ‘b_node’, add them.

a_val, b_val = yield [("RV", [a_node]), ("RV", [b_node])]

Wrap the result in a node.

result_val , = yield [("CNV", [a_val + b_val])]

Delete the edge that makes ‘gc_root_node’ live.

yield [("DE", [gc_root_edge])]

Return.

raise PrimitiveFinished(result_val)

10

The example given here is somewhat artificial since a nop will never occur in the middle of a function
body like that. However, it is representative for the real-life scenario where a function call happens in the
middle of a function body. The generated code for a function call is more complex, but it has the same
effect if the function body of the callee contains a nop.

5.4 Request handler

5.4.1 Legacy function call idiom

Speaking of function calls, they’re a bit of a special case in the Modelverse. The calling convention for
primitive functions, which is also used by the JIT as the calling convention for JIT-compiled functions,
stipulates that every function is written as a generator function. Values are returned by throwing and
catching PrimitiveFinished exceptions.

This gives rise to the following function “call” idiom.

try:

Forward the messages we get to this generator

Sometimes the callee might not even be a generator ,

in which case a ‘PrimitiveFinished’ exception is

thrown and caught immediately.

gen = callee(**parameters)

server_response = None

while True:

server_response = yield gen.send(server_response)

except PrimitiveFinished as e:

‘e.result’ contains the function call’s result.

result = e.result

There are a few things about this idiom that I would like to note:

• The callee can transparently request that the server do something via a yield-expression, as if the
server’s frame was right above the callee’s in the call stack.

• This idiom is high-ceremony, which makes it easier to just inline short function definitions than to
call them. For code written by humans, that’s arguably bad for code reuse. In JIT-compiled code,
this idiom makes the generated source code bloated.

• The idiom as shown above is an affront to algorithmic complexity. When the callee wants to send a
request to the server, it transparently performs a yield, which pops the callee’s stack frame. When
the caller intercepts the callee’s request, it performs a yield of its own, and in doing so pops its
own stack as well. The caller receives a response from the server, restores the callee’s stack frame
and forwards the response to the callee.

This does not scale: sending a request to the server takes O(n) operations, where n is the depth of
the call stack.

Strikingly, that does not matter for the reference interpreter, which has a bounded call stack depth.
However, the idiom just won’t do for the JIT, because JIT-compiled code can create arbitrarily deep
call stacks.

5.4.2 Request handler function call idiom

The request handler is a data structure that was designed specifically to “fix” the O(n) complexity of the
previous idiom.

It accomplishes its goal by maintaining its own call stack of generators, which is separate from the
Python call stack. The request handler then functions as an intermediary between the currently active
(i.e., top-of-stack) generator and the Modelverse server.

11

Modelverse State requests from the top-of-stack generator are accepted by the request handler and
forwarded to the server. This results in an algorithmic complexity of O(1) per Modelverse State request,
as any given request pops only the top-of-stack generator’s stack frame and that of the request handler.

The request handler also offers some additional services which are accessible through special request
types. These requests are intercepted and handled by the request handler; they are completely transparent
to both the callee that issues them and the server, which never receives them.

The services provided by the request handler include:

• Function calls. If calling a function is the objective, then it suffices to perform a CALL ARGS or a
CALL KWARGS request and wait for it to return. A short example has been included below.

result_1 , = yield [("CALL_ARGS", [callee_1 , (a, b)])]

result_2 , = yield [

("CALL_KWARGS", [callee_2, {’a’: a, ’b’: b}])]

raise PrimitiveFinished(result_2)

A CALL ARGS or CALL KWARGS request simply pushes a frame onto the request handler’s call stack.
This is performed in O(1) time and allows the callee to issue Modelverse State requests in O(1) time.

• Tail calls. These are a special kind of function call. Specifically, they are functionally equivalent to
performing a function call and then returning the result.

The difference between a tail call and the construction I just described is that tail calls are more
efficient: they replace the top-of-stack generator instead of pushing another one onto the stack and
then popping both the child and current generator.

For instance, the previous example can be rewritten as:

result_1 , = yield [("CALL_ARGS", [callee_1 , (a, b)])]

yield [("TAIL_CALL_KWARGS", [callee_2, {’a’: a, ’b’: b}])]

The JIT does not generate tail call instructions, but the bytecode IR interpreter uses them extensively
to cheaply transfer control to instructions.

• Exception handling. The downside of maintaining a custom call stack is that it makes it impossible
to rely on Python exception handling to throw and catch exceptions. The request handler has
therefore been equipped with request types that specify try blocks and set up exception handlers.

An exception handler is a generator function to which a tail call is performed when an exception is
thrown whose type matches the handler’s type exactly.

Exception handlers must always occur in try blocks, delimited by TRY and END TRY requests. A
single try block may contain zero or more exception handlers.

Here’s an example of what an exception handler looks like:

def handle_exception(exception):

print("Oh no!")

raise PrimitiveFinished(False)

yield [("TRY", [])]

yield [("CATCH", [SomeExceptionType , handle_exception])]

yield [("CALL_ARGS", [callee, (a, b)])]

yield [("END_TRY", [])]

raise PrimitiveFinished(True)

This exception handling mechanism is used to handle, among others, exception instances of type
JitCompilationFailedException in the Kernel. Such an exception informs the Kernel that a
function was not amenable to JIT compilation. The Kernel responds to that message by using the
reference interpreter to run the non-compilable function.

• Debug information and stack traces. As stated in the previous paragraph: throwing an exception
triggers the request handler to unwind the stack until it finds a suitable exception handler. Said
handler is then placed on top of the call stack and given the exception.

12

This does not account for fatal exceptions, i.e., exceptions for which no handler is defined. There is
no recovering from fatal exceptions: they always spell the end of a Modelverse task.

Fatal exceptions are also bugs that often require immediate attention from the programmer. In that
endeavor, a stack trace, that is, a list of the call stack frames that were active when the exception was
thrown, can be helpful.

To generate a proper stack trace, the request handler needs to know the names of the functions on
the stack. A function can inform the request handler of its name by issuing a DEBUG INFO request.

For example, the statement below tells the request handler that the top-of-stack generator is the
result of compiling function foo with the baseline JIT.

yield [("DEBUG_INFO", ["foo", source_map , "baseline-jit"])]

5.5 Source maps

The source map argument from the final example of the previous section represents an object that maps
lines in the generated source code to ranges in the original source code.

Source maps are constructed during the code generation phase of the compiler. If a fatal exception
is thrown, then the request handler unwinds the call stack one stack frame at a time and consults the
source map for each frame.

The primary advantage of this mechanism is that it allows the request handler to reconstruct stack
traces with a relatively high degree of accuracy whilst keeping run-time overhead to a minimum for
programs that never throw a fatal exception.

For the curious, here’s a quick example of a typical stack trace:

[bootstrap/compilation_manager.alc:16:2-1] in compilation_manager (baseline-jit)

[bootstrap/compilation_manager.alc:118:2-1] in link_and_load (baseline-jit)

[integration/code/factorial.alc:12:3-0] in jit_func168 (baseline-jit)

The jit func168 function is actually called main in the source code, but it is called via an indirect call.
The JIT runtime was smart enough to realize that it could compile the function, but the JIT can’t always
retrieve the original names of functions that are called indirectly. Hence the compiler-generated name.

5.6 Thunks

5.6.1 Compile-everything strategy

The baseline JIT’s original strategy when a direct call is encountered during some function’s compilation
was to

1. compile the callee right away,

2. store the compiled function in a global variable, and

3. generate a call to that variable.

If the callee cannot be compiled (which is discovered during the first step), then the JIT emits code
that runs the callee using the reference interpreter.

The rationale for this relatively simple strategy is that it minimizes function run-times: it uses the JIT
to compile all functions that can be compiled and directly invokes the reference interpreter on functions
which cannot be compiled. It never accidentally makes the reference interpreter run a compilable function
and executing a mutable function does not have any overhead beyond what is required by the interpreter.

It’s tempting to assume that a strategy which optimizes function run-times will also optimize program
run-times. This line of thinking is flawed because it does not consider the (one-time) cost of compiling
functions. And that figure is a relevant part of program run-time, but is left out of function run-times.

Let’s illustrate this with an extreme example: suppose that there is some error-reporting function
that does complicated processing and relies on a large number of other functions to do that. Such a
function will never be called if the program is given valid inputs. However, the compile-everything
strategy described in this section will waste precious time compiling it – along with any functions it calls!

13

5.6.2 Selective, thunk-based compilation

Ideally, we’d have a function compilation strategy that:

• Minimizes function run-times by making optimal decisions about whether callees should be
compiled. These decisions are used to generate function call code that is tailored to the mutability
of the function being called.

• Minimizes compile-time by only compiling those functions which will actually be called during
the program’s execution.

The thunk-based strategy used by the JIT comes close to that. Direct calls to functions that haven’t
been compiled yet are replaced by direct calls to thunks: small functions that compile their respective
callees, replace themselves by their compiled callees, and then run them.

This scheme satisfies our ideal strategy on all points but one: it compromises on calls to mutable
functions. Functions are only found to be mutable after they have been replaced by a thunk, as the JIT
does not in advance know which functions can be compiled under this scheme.

When a thunk realizes that its callee cannot be compiled, it replaces itself by a function that calls the
reference interpreter. This adds some overhead to calls to mutable functions from non-mutable functions.

Calls to mutable functions are vanishingly rare, however. So the trade-off made by thunks is never
expected to accidentally do any harm – quite the opposite, actually.

5.7 Performance

The baseline JIT’s short and simple compilation pipeline enables it to generate code quickly. The rationale
for this design is to minimize the time it takes to compile a function while avoiding the performance hit
of repeatedly walking the bytecode IR graph.

Figure 4 quite clearly shows that this approach pays off on the same simulation benchmark that was
used earlier in figure 3.

by
te

co
de

-i
nt

er
pr

et
er

ba
se

lin
e-

jit

0

50

100

150

167.22

55.16

1.29 7.28

Ti
m

e
[s

]

compile-time total-runtime

Figure 4: Comparison of bytecode IR interpreter and baseline JIT performance on a single simulation
benchmark.

14

5.7.1 Shortcomings

Despite the baseline JIT’s capacity to generate code quickly, it does have some shortcomings. Specifically,
its optimizations are rather conservative, which makes it incapable of eliminating certain types of
overhead that result from the semantics of Modelverse instructions.

For example, local variables in the Modelverse consist of two nodes: a node that contains the variable’s
value and another node that has an edge to the first node. The latter is essentially a pointer, and will
henceforth be referred to as such.

Note that this construction is mostly a work-around for the immutability of node values: if it were
possible to change the values within nodes then a single node per variable would have sufficed.

To load a local variable’s value, the baseline JIT generates code that looks approximately like this:

value_node , = [("RD", [pointer, "value"])]

value, = [("RV", [value_node])]

As you can see, the pointer node is stored in a local variable in the generated code, but the value node
and its underlying value is not. This construction is inefficient, but it is also necessary because:

• Reading a value from or storing a value in an undeclared local variable is an error. Simply
promoting all Modelverse local variable values to locals in the generated code would break
Modelverse instruction semantics.

• The instructions that perform loads and stores are distinct from the instruction that produces a
pointer to a local variable. It is hence possible to “leak” a pointer to another function and use it
there.

There is a fundamental mismatch between these semantics and those of Python local variables,
which are bound to the current function call.

There are ways to solve this problem and make the common use case for local variables as efficient as
Python local variables. However, this problem is not one that can be solved trivially, which puts it out of
scope for the baseline JIT.

The design of the baseline JIT makes it ideal for functions that are executed just often enough for
them to be “worth” the time it takes to compile them. However, the baseline JIT is subpar for functions
that are called so very often that their run-time dwarfs the time it takes to compile and optimize them.

6 Fast JIT

The fast JIT is the answer to the baseline JIT’s shortcomings: it tries to generate code that is as fast as
possible, though it ironically does so rather slowly. Its compilation pipeline is far longer than the baseline
JIT’s, as compile-time is no longer an issue and the focus has shifted to run-time performance.

6.1 Bytecode IR to CFG IR

The first major step in the fast JIT’s compilation pipeline is to convert bytecode IR to CFG IR. CFG IR
derives its namesake from the fact that it represents a control-flow graph: a graph where vertices represent
basic blocks, linear pieces of code without branches. Edges in the control-flow graph represent possible
paths of control flow.

A basic block consists of the following:

• A list of block parameter definitions. Incoming edges must substitute values for these parameters,
and any block dominated by the parameter definitions can use them as aliases for these values.

• A list of value definitions. Values are defined exactly once and cannot be re-defined or stored to.

• A single flow instruction, which specifies what happens when the end of the block’s list of
definitions is reached. The following types of flow instructions exist:

– Jump flow. This type of flow instruction unconditionally transfers control flow to the block it
targets.

15

– Select flow, which transfers control flow to one of its two target blocks, depending on whether
its condition evaluates to “true” or “false.”

– Return flow. Terminates the basic block’s function and returns value to the caller.

– Throw flow. Terminates the basic block’s function and throws an exception.

– Unreachable flow. This final flow instruction type indicates that the end of the basic block
cannot be reached. Reaching it anyway results in a fatal exception.
Unreachable flow instructions are created by the CFG IR construction algorithm. CFG IR
for well-formed code usually doesn’t contain them and unreachable flow that survives all
optimization passes gets translated to a raise statement that throws a fatal exception.

The control-flow graph for a given function body is defined as the set of all basic blocks that are
reachable from the function’s entry point block.

This representation implies that no basic block in the graph is unreachable or dead: it automatically
removes unreachable basic blocks from the graph when flow instructions are rewritten.

6.1.1 SSA form

Although this has not been stated explicitly thus far, all values in CFG IR are in fact in static single
assignment (SSA) form: [5] they can only be assigned to once. The equivalent of variable assignment
across basic blocks is control flow, which substitutes values for basic block parameters. This representation
is not entirely identical to SSA form as it occurs in the literature, but it can trivially be reduced to it.

A note on SSA form: the initial CFG IR construction phase need not worry about constructing SSA
form for local variables because there are no Modelverse instructions that directly manipulate local
variables. In the Modelverse instruction set, locals can only be manipulated indirectly by loading a pointer
node and setting the pointee. SSA form forbids re-assigning values to definitions, but this principle does
not apply to other effectful instructions, such as pointer loads and stores.

6.1.2 Textual CFG IR

To aid in debugging, CFG IR offers a textual representation in addition to its in-memory representation.
Control-flow graphs are formatted as a list of basic blocks, which are identified by a label prefixed by a
bang (!) and a list of parameter definitions.

A basic block contains a list of dollar-sign–prefixed ($) definitions and a flow instruction.
This representation is best illustrated by an example. Listing 9 defines the remainder function.

Optimized CFG IR for the remainder function is given in listing 10.

Listing 9: Source code for the remainder function
Integer function remainder(a : Integer, b: Integer):

return a - ((a / b) * b)!

Listing 10: Optimized CFG IR for the remainder function
!0():

$131 = func-parameter a

$8 = read $131

$135 = func-parameter b

$12 = read $135

$137 = direct-call (’macro-io’, void) nop()

$121 = binary $8, ’/’, $12

$124 = binary $121, ’*’, $12

$127 = binary $8, ’-’, $124

$115 = create-node $127

return $115

16

Note that every operation performed by the IR in listing 10 is strictly necessary. This can be observed
in the generated code by examining listing 11. Contrast this with listing 12, which shows the code
generated for the remainder function by the baseline JIT.

Listing 11: Fast JIT–generated code for the remainder function
def remainder(a, b, **kwargs):

tmp5, tmp10 = yield [(’RV’, [a]), (’RV’, [b])]

yield None

tmp15 = (tmp5 / tmp10)

tmp19 = (tmp15 * tmp10)

tmp22 = (tmp5 - tmp19)

tmp25, = yield [(’CNV’, [tmp22])]

raise PrimitiveFinished(tmp25)

Note that all temporaries in listing 11 except tmp25 are integer values. Simple integer arithmetic is
applied to them directly, which is a lot faster than the node juggling that can be seen in figure 12.

Listing 12: Baseline JIT–generated code for the remainder function
def remainder(a, b, **kwargs):

jit_locals = yield [(’CN’, [])]

jit_locals_edge , a_ptr = yield [

(’CE’, [kwargs[’task_root’], jit_locals]),

(’CN’, [])]

tmp20, tmp25, b_ptr = yield [

(’CE’, [jit_locals , a_ptr]),

(’CD’, [a_ptr, ’value’, a]),

(’CN’, [])]

tmp34, tmp5, tmp49 = yield [

(’CE’, [jit_locals , b_ptr]),

(’CD’, [b_ptr, ’value’, b]),

(’RD’, [a_ptr, ’value’])]

tmp53, tmp58 = yield [

(’RV’, [tmp49]),

(’RD’, [a_ptr, ’value’])]

tmp62, tmp63 = yield [

(’RV’, [tmp58]),

(’RD’, [b_ptr, ’value’])]

tmp67, = yield [(’RV’, [tmp63])]

tmp56, = yield [(’CNV’, [(tmp62 / tmp67)])]

tmp68, tmp69 = yield [

(’RV’, [tmp56]),

(’RD’, [b_ptr, ’value’])]

tmp73, = yield [(’RV’, [tmp69])]

tmp54, = yield [(’CNV’, [(tmp68 * tmp73)])]

tmp74, = yield [(’RV’, [tmp54])]

tmp46, tmp75 = yield [

(’CNV’, [(tmp53 - tmp74)]),

(’DE’, [jit_locals_edge])]

raise PrimitiveFinished(tmp46)

17

6.2 CFG IR optimizations

CFG IR was designed specifically to make it highly amenable to a number of optimizations. Each
optimization is implemented as a single pass, which can rewrite the control-flow graph. This includes the
contents of the graph’s basic blocks.

Practically none of the optimization passes described in this section are truly useful in isolation. They
depend on each other to work effectively, and many of them are run more than once.

All optimizations but local definition check elision have linear complexity with regard to the number
of blocks and definitions in the control-flow graph.

6.2.1 Flow instruction optimizations

This optimization pass tries to optimize flow instructions in CFG IR. It is based on a simple set of rewrite
rules. The rules are listed below and are accompanied by brief examples.

• Select flow is replaced by jump flow if the select flow’s condition is a literal.

$10 = literal True

select $10, !1($8), !2()

↓

$10 = literal True

jump !1($8)

• Jump flow that targets a block which contains no parameters or definitions can be replaced with the
target block’s flow instruction.

!0():

$26 = direct-call ’macro-io’ input()

jump !1()

!1():

select $26, !2(), !3()

↓

!0():

$26 = direct-call ’macro-io’ input()

select $26, !2(), !3($10)

• Jump or select flow branches that target blocks which contain nothing but a jump can be replaced by
branches to the target block.

!0():

$26 = direct-call ’macro-io’ input()

select $26, !2(), !3()

!2():

jump !4()

↓

!0():

$26 = direct-call ’macro-io’ input()

select $26, !4(), !3()

18

6.2.2 Local definition check elision

The resolve Modelverse instruction returns a pointer node to a local value if an appropriate local has
been declared. Otherwise, it returns a pointer to a global value.

These semantics make it hard to tell whether a given resolve instruction accesses a local variable or
not. Indeed, the semantics of resolve sometimes make it impossible to decide at compile-time whether an
instruction accesses a local or a global, because one and the same instruction can access a local variable
on one path through a function and access a global variable on another.

Here’s a pseudo-code example of such a situation:

global ’x’

def foo():

if condition:

define local ’x’

resolve ’x’

The resolve instruction above will produce a pointer to a local if condition turns out to be “true.”
Otherwise, it will produce a pointer to a global.

The fast JIT copes with that by generating the following sequence of basic blocks for a resolve

instruction.

!0():

...

$1 = check-local-exists ’x’

select $1, !2(), !3()

!2():

$4 = resolve-local ’x’

jump !5($4) # Make $4 the result

!3():

$6 = resolve-global ’x’

... # Check that a global named ‘x’ exists.

jump !5($6)

!5($7 = block-parameter):

... # $7 is the ‘resolve’ instruction ’s result.

Where the check-local-exists value tests if a local variable named ‘x’ has been defined.
The local definition check elision optimization simplifies constructs like this by replacing thecheck-local-exists

value with a literal whenever possible.
The first thing the optimization does is to compute the dominance tree for the control-flow graph, as

well as the set of all reachable basic blocks for each basic block in the graph.
The optimization then iterates over the control-flow graph’s basic blocks and tries to replace

check-local-exists values with:

• literal True if there is a local variable definition that dominates the check-local-exists value.

• literal False if there is no local variable definition from which the check-local-exists value
is reachable.

The flow instruction optimizations from section 6.2.1 and the block merging optimization from section
6.2.3 can then eliminate the conditional branches that used to rely on check-local-exists values and
turn the resulting sequence of basic blocks into a single basic block.

Implementation-wise, the algorithm detailed in [4] is used to construct the dominator tree. The set of
reachable basic blocks is computed for every basic block using a naı̈ve transitive closure algorithm.

The latter algorithm’s complexity is not as bad as it seems because every basic block has an out-degree
that is at most two, but it does make the local definition check elision pass the only optimization in the
pass pipeline with quadratic complexity.

19

6.2.3 Block merging

The block merging optimization is a fairly straightforward transformation: any two blocks A and B are
merged into a single block if A’s flow instruction is a jump and B has exactly one incoming edge.

This simple optimization makes other optimizations that operate within the confines of a basic block
more effective and helps lower processing time by reducing the total number of basic blocks in the
control-flow graph.

There is a slightly more aggressive variant of the block merging optimization, which duplicates small
blocks if their in-degree is greater than one.

That optimization was not implemented because it’s not always a clear win: duplicating a basic block
may aid later optimization passes, but it’s hard to tell in advance if it will. Furthermore, duplicating
blocks increases code size, which slows down the JIT compiler and possibly the virtual machine that
runs the compiler’s generated code.

6.2.4 Trivial phi elimination

Trivial phi elimination is an optimization that replaces trivial block parameters by simple definitions. A
block parameter p is said to be trivial if and only if there are less than two arguments r, q for p such that
r , p ∧ q , p.

If there is only one argument r : r , p for p, then the parameter definition for p is deleted along with
any arguments for p, and all occurrences of p are replaced by r.

This version of trivial phi elimination does not touch trivial block parameters p for which there is no
r : r , p because there is little point in doing so: p’s value will be undefined in that case, which will cause
a run-time error if p’s value is ever queried.

The trivial phi elimination optimization is based on the algorithm with the same name, as presented
in [3].

The code below shows the trivial phi elimination optimization in action.

!0():

...

$1 = literal True

jump !2($1)

!2($3 = block-parameter):

$4 = direct-call ’jit’ is_done(arg=$3)

select $4, !2($3), !5()

↓

!0():

...

$1 = literal True

jump !2()

!2():

$4 = direct-call ’jit’ is_done(arg=$1)

select $4, !2(), !5()

6.2.5 SSA construction

It might seem odd that the fast JIT includes an SSA construction algorithm which operates on an
intermediate representation that is already in SSA form. The answer to this apparent paradox is that SSA
construction is not at all applied to value definitions, which are already in SSA form.

Rather, an SSA construction algorithm is applied to pointer loads and stores: the goal is to turn the
indirect manipulation of Modelverse locals into value definitions.

A local variable ‘x’ is considered eligible for promotion to value definitions if every resolve-local

’x’ value is used exclusively as the pointer argument to load and store values, i.e., no pointer to ‘x’ is
leaked from the function that declares ‘x.’

20

The next step is to apply the SSA construction algorithm by M. Braun et al [3] to all eligible local
variables.

This technique is powerful enough to turn nearly all source-level local variables into value definitions,
which are in turn compiled to Python local variables. It also makes function bodies amenable to further
optimization by removing a layer of indirection from the IR.

6.2.6 Direct call optimization

Unlike the baseline JIT’s direct tree IR construction routine, the fast JIT’s CFG IR construction algorithm
does not try to discover direct function calls. Instead, CFG IR construction converts all bytecode IR
function calls to CFG IR indirect calls.

The direct call optimization pass rectifies this situation post–CFG IR construction by replacing indirect
calls with direct calls. Any indirect call to a literal or resolve-global value is turned into a direct call.

The rationale for performing this optimization halfway through the pass pipeline is that preceding
passes may have simplified the CFG IR sufficiently to expose direct calls which would otherwise remain
hidden.

6.2.7 Data structure optimizations

A common idiom to iterate over the contents of a Modelverse dictionary is to first copy the dictionary’s
keys to a set and then pop elements from the set until it is empty. The code below is more or less
equivalent to a Python for loop.

keys = dict_keys(symbols)

while (list_len(keys) > 0):

key = set_pop(keys)

Unfortunately, this requires a lot of communication with the Modelverse State: copying all dictionary
keys to a set and then popping them requires at least three Modelverse requests per key.

The data structure optimizations offered by the fast JIT are a novel approach to solving this. Informally,
they apply a form of pattern matching on value definitions and their uses; matching uses and definitions
are transformed to use specialized data structures which do not require any communication with the
Modelverse State.

The generated code for the dictionary key iteration source code snippet is roughly equivalent to:

keys_list , = yield [("RDK", [symbols])]

rev_keys_list = keys_list[::-1]

while len(rev_keys_list) > 0:

key = rev_keys_list.pop()

The code above requires only one Modelverse State request for the entire dictionary. That’s definitely
an improvement over three requests per dictionary key.

Another thing that’s worth noting is that the list of keys is reversed before popping elements from
it. That’s no accident: the pop member function on lists pops the last element from a list, whereas the
set pop function pops the first element from a set. Popping the first element from a list is indeed possible
in Python, but that would induce quadratic complexity. Reverting the list ensures compatibility without
jeopardizing the source code’s semantics.

6.2.8 CFG IR intrinsic expansion

Intrinsics were briefly discussed in section 5.2. To reiterate, an intrinsic is a well-known function and calls
to intrinsics can be replaced with alternative sequences of instructions. These instructions are usually
significantly faster and sometimes make other optimizations more effective.

The baseline JIT’s intrinsics expand function calls to tree IR. The fast JIT also applies these intrinsics
during codegen.

In addition to the baseline JIT’s intrinsics, the fast JIT has its own class of intrinsics called CFG IR
intrinsics. They are expanded by the aptly-named CFG IR intrinsic expansion pass.

CFG IR intrinsics are rarely more efficient than their tree IR counterparts, but expanding intrinsics
during CFG IR optimization is often helpful for other optimization passes.

21

6.2.9 Performing reads at compile-time

Performing node value reads at compile-time is another optimization that was copied from the baseline
JIT’s optimization pipeline. Read-value (RV) State requests are performed in advance to save some time
at run-time.

6.2.10 Read commoning

Read commoning tries to eliminate repeated read instructions and push read instructions closer to the
node that is being read.

If a value definition is only used by read values, then a new read value is inserted right after the
instruction that produces the node which is being read. All existing read values for this node are replaced
by the single new node. This optimization is performed across basic blocks, and is capable of peeking
through basic block parameters.

6.2.11 Constant folding

Constant folding is yet another optimization that was copied from the baseline JIT. Unary and binary
expressions with all-literal arguments are evaluated at compile-time and replaced by literals that represent
their result.

Furthermore, the constant folding pass also replaces read values which read create-node values by
the arguments of the create-node values.

6.2.12 Dead code elimination

Dead code elimination is accomplished by first noting all definitions that have side-effects and then
marking as live all of these definitions with their dependencies and the dependencies of these dependencies
and so on.

All definitions which are not live after this are considered dead, and are therefore removed.

6.3 Nop and GC root insertion

Both the baseline JIT and the fast JIT insert nops and GC roots, though there are slight differences between
the techniques they use and their argument-node–protection contract.

About that last point: the baseline JIT protects its arguments implicitly by storing them in callee local
variables, but the fast JIT has to protect them explicitly. That makes it advantageous to have the caller
protect argument nodes from the GC in the fast JIT, whereas the baseline JIT is better off having the callee
protect argument nodes.

This slight difference in the GC protection contract technically makes the baseline JIT and fast JIT
calling conventions incompatible, but that’s not an issue as long as a single JIT is used.

6.3.1 Nop insertion

Nops are inserted during the CFG IR construction phase. This is analogous to how the baseline JIT
inserts nops during the tree IR construction phase.

Like the baseline JIT, the fast JIT inserts nops on loop back-edges. Additionally, the fast JIT also
includes nops in its function prologue.

6.3.2 GC root insertion and elision

Initially, the fast JIT creates GC roots for all create-node definitions and function call return values,
regardless of whether they are at risk of getting garbage-collected.

GC root insertion is implemented as a pass in the CFG IR’s optimization pipeline.
GC root elision is another CFG IR optimization pass that does the opposite of GC root insertion: it first

tries to find values which are being protected from the garbage collector despite not being in danger and
then deletes the definitions that protect them.

22

Specifically, it performs an intra–basic block analysis that tracks down values which have a definition
and a last use with no nop-inducing definition in-between. These values are relatively common and
need not be protected from the garbage collector.

6.4 An overview of the pass pipeline

At the time of writing, the fast JIT passes are applied in the following order:

1. Flow instruction optimizations (section 6.2.1)

2. Local definition check elision (section 6.2.2)

3. Flow instruction optimizations (section 6.2.1)

4. Block merging (section 6.2.3)

5. Trivial phi elimination (section 6.2.4)

6. SSA construction (section 6.2.5)

7. Direct call optimization (section 6.2.6)

8. Data structure optimizations (section 6.2.7)

9. CFG IR intrinsic expansion (section 6.2.8)

10. Performing reads at compile-time (section 6.2.9)

11. Read commoning (section 6.2.10)

12. Constant folding (section 6.2.11)

13. Dead code elimination (section 6.2.12)

14. Flow instruction optimizations (section 6.2.1)

15. Dead code elimination (section 6.2.12)

16. Block merging (section 6.2.3)

17. GC root insertion (section 6.3.2)

18. GC root elision (section 6.3.2)

19. Dead code elimination (section 6.2.12)

Some optimization passes appear more than once. The reason for that apparent redundancy is that
passes often expose optimization opportunities for other passes.

For example, dead code elimination can make a basic block empty, which can make it amenable to a
flow instruction optimization. At the same time, flow instruction optimizations may (implicitly) remove
blocks from the control-flow graph, which can turn some definitions into dead code.

6.5 CFG IR to tree IR

The final step in the fast JIT’s compilation pipeline is the translation of CFG IR to tree IR. The translation is
relatively formulaic: each definition is converted to one or more tree IR nodes, which are then combined
in a compound node, wrapped in a function definition and sent through the baseline JIT’s code generation
facilities.

23

6.6 Performance

The fast JIT invests a lot of time to generate faster code: it is not an optimized implementation, but it is an
optimizing Kernel configuration.

Whether this investment pays off or not depends entirely on how long the program runs. Programs
that run for a long time and contain a relatively small number of functions will benefit greatly from the
optimizations implemented in the fast JIT. Programs that run for only a short time and/or define a lot of
different functions are probably better off using the bytecode IR interpreter or the baseline JIT.

The fast JIT turned out to be an improvement over the baseline JIT when applied to the simulation
benchmark. Figure 5 visualizes the results as a bar chart; the fast JIT seems to save over one sixth of the
benchmark’s run-time compared to the baseline JIT.

The fast JIT is not as big an improvement over the baseline JIT as the baseline JIT is over the bytecode
IR interpreter, but diminishing returns are only to be expected when optimizing a single component of
the Modelverse, i.e., the Modelverse Kernel. Another redeeming quality of the fast JIT is that it’s a much
better starting point for future optimizations than the baseline JIT.

ba
se

lin
e-

jit

fa
st

-ji
t0

20

40

60 55.16

40.3

7.28

16.8

Ti
m

e
[s

]

compile-time run-time

Figure 5: Comparison of baseline JIT and fast JIT performance on the mvc simulate simulation benchmark.

7 Adaptive JIT

The adaptive JIT is a tiered JIT that defines a temperature counter for every function. A heuristic estimates
the temperature counter’s initial value. After that, the function’s temperature is incremented every time
the function is called.

The adaptive JIT automatically picks a JIT or interpreter based on the temperature of the function to
run: “cold” functions are executed by the bytecode IR interpreter, “lukewarm” functions are compiled
by the baseline JIT and “hot” functions are compiled by the fast JIT.

Note that this is not a static decision: a function that is initially handed over to the bytecode IR
interpreter because it is estimated to be cold can be compiled first by the baseline and then by the fast JIT
if it is called often enough.

That’s also the adaptive JIT’s namesake: it can adapt to actual usage patterns at run-time, and use
that to balance the cost of running an unoptimized version of a function and optimizing said function.

24

7.1 Function temperature heuristics

A number of heuristics to compute initial function temperatures were tried out in the adaptive JIT. They
are presented in this section.

7.1.1 Favor large functions

The first heuristic that I tried was to favor large functions, as the empirical results from [7] seemed to
indicate that this would result in the best program run-times.

The idea behind this heuristic is to mark large functions – function size is measured as the total
number of instructions in its definition – as hot from the get-go because they are more likely to run for a
long time. So we risk losing a lot of time running a suboptimally-compiled function if we don’t throw
everything we’ve got at large functions.

7.1.2 Favor small functions

My second heuristic does the exact opposite: very small functions are assumed to be “hot” and very
large functions are labeled as “cold.”

I implemented this in part to see if favoring large functions is truly a solid strategy and in part because
compiling small functions with the fast JIT is actually fairly cheap in terms of compile-time. Conversely,
it’s costly to first interpret even a small function with the bytecode IR interpreter, then compile it with
the baseline JIT and finally compile it with the fast JIT.

In other words: favoring small functions aims to grab the low-hanging fruit that small functions are
while steering clear of larger, costlier to compile functions.

7.1.3 Favor loops

A third option is to prefer functions that contain loops: function body size reduces a function’s temperature
linearly and each loop in the function body gives the function a temperature boost that is linear with
regard to the size of the loop body.

This heuristic penalizes only large, linear functions. Both small functions and functions that contain
large loops are favored.

The reasoning for this heuristic is twofold:

• Small functions are low-hanging fruit. As asserted in the previous section, small functions can
be compiled quickly and can still provide a decent speedup.

• Not compiling a function with a large loop in it can be a huge mistake. Suppose that we have a
function that contains a large loop. We feed it to the bytecode IR interpreter or the baseline JIT. If
this loop sees enough iterations, then we might realize that we really should have compiled it with
the fast JIT.

Alas, we can only re-compile a function after its current run has finished. So we’re now stuck with
our choice of execution engine until the next time that the function is called.

It might be a good idea to err on the safe side and use the fast JIT to compile functions with (large)
loops in them.

7.1.4 Favor small loops

The final heuristic that I implemented favors small functions and gives a boost to functions that contain
small loops: function body size reduces function temperature linearly and each loop in the function body
increases the temperature by a linear function of the square root of the loop body’s size.

The consequence is that large functions are penalized, even if they contain large loops. Small functions
and functions with small loops in them are favored.

The small loop favoring heuristic was developed because the Modelverse standard library contains
functions with very large loops in them which trigger the quadratic complexity of the fast JIT’s local
definition check elision optimization as described in section 6.2.2.

25

For example, at the time of writing, the user function skip init function contains a loop that is
almost 1000 lines in length. It mostly just handles user input and delegates that to other functions, but
it’s a very costly function to compile.

The small loop–favoring heuristic will not compile user function skip init, and that turns out to
be the right call for all but the longest-running programs.

7.2 Performance

The choice of adaptive JIT heuristic can have a significant impact on total program run-time. Figure 6
exemplifies this by measuring the mean run-time of the simulation benchmark for the baseline JIT, the
fast JIT, and every adaptive JIT heuristic.

Empirical results were actually quite surprising here: firstly, the large function–favoring heuristic
performs worse than every other adaptive JIT heuristic and the fast JIT. And second, the small loop–
favoring heuristic, which is arguably the most complex way to compute initial function temperatures
achieves the best performance.

Both of these observations run contrary to the data for Java JIT compilers, as described in [7]. This
may be related to the local definition check elision optimization’s quadratic complexity. If not, then an
alternative explanation is that function temperatures in Java’s standard library and Modelverse libraries
simply correlate differently with code size and loop body size.

ba
se

lin
e-

jit

ad
ap

ti
ve

-ji
t-

fa
vo

r-
la

rg
e-

fu
nc

ti
on

s

ad
ap

ti
ve

-ji
t-

fa
vo

r-
lo

op
s

fa
st

-ji
t

ad
ap

ti
ve

-ji
t-

fa
vo

r-
sm

al
l-

fu
nc

ti
on

s

ad
ap

ti
ve

-ji
t-

fa
vo

r-
sm

al
l-

lo
op

s0

20

40

60 55.16

47.74
44.88

40.3 39.53
34.79

7.28

16.59 14.92 16.8

6.35 8.09

Ti
m

e
[s

]

compile-time run-time

Figure 6: Comparison of baseline JIT, fast JIT and adaptive JIT performance on the mvc simulate

simulation benchmark.

Selecting which JIT to use differs from conventional function optimization techniques in that it does
not try to generate better code, but instead tries to reduce compile-time. That made the adaptive JIT a bit
of a gamble – there was never any guarantee that it would actually improve total run-times – but it is
vindicated by figure 6.

26

7.3 Calling convention: GC compatibility

A subtle issue during the development of the adaptive JIT was the mismatch between the GC root
insertion scheme used by the baseline JIT and the fast JIT: as discussed in section 6.3, the baseline JIT
makes the callee responsible for the protection of function arguments and the fast JIT protects arguments
at the call-site.

Hard-to-detect bugs were caused by baseline JIT–compiled functions calling fast JIT–compiled
functions, which left arguments unprotected from the GC.

This source of bugs was eventually fixed by having the baseline JIT protect function arguments at
both the call-site and inside the callee when the adaptive JIT is turned on.

8 Performance evaluation

Evaluating the performance of the JIT-based Modelverse Kernel was actually quite challenging because
the Modelverse is not a mature software system yet, so there are few truly representative programs that
can be used as benchmarks.

Figure 7 shows the performance of every Modelverse Kernel configuration on a number of benchmarks.
Of these benchmarks, the mvc simulate benchmark, which has also been the running benchmark
throughout this report, is considered to be the most representative.

It tests the execution of a somewhat realistic use of the Modelverse and its core functions, through the
use of a simple Petri nets example. First, Petri net metamodels are created for both the design language
and the runtime language. Both languages only differ marginally from each other, with the runtime
language only adding information on the currently selected transition for execution. Afterwards, a trivial
Petri net model is created in the design language. This part tests the domain-specific and meta-modeling
concepts of the Modelverse.

After all models are created, transformations are defined to map between both languages: from
design to runtime, and vice versa. Additional transformations are created for in-place model simulation
and the printing of a Petri net model. This tests the modification of models, through the use of
model transformations. Due to the use of a separate design and runtime language, we test exogenous
transformations. The simulation transformation takes a single step in the Petri net model, by firing one
of the applicable transitions, and therefore tests endogenous transformations.

All other benchmarks generally have a shorter run-time, which explains why the fast and adaptive
JITs are much more effective for the mvc simulate benchmark than for the other benchmarks.

Performance is measured relative to the interpreter configuration due to large variations in
benchmark run-times.

8.1 A note on interpreter and legacy-interpreter

The legacy-interpreter configuration in figure 7 represents the performance of the legacy Modelverse
Kernel which does not include support for JIT compilation. The interpreter configuration, on the other
hand, is the new Modelverse Kernel with JIT support for which the JIT has been disabled.

It is not entirely surprising that the interpreter configuration is slower, as it includes hooks that
facilitate JIT compilation. It also uses the request handler from section 5.4 to perform function calls, which
is likely a higher-overhead solution than the ad-hoc function call idiom used by the legacy interpreter.

The fact that interpreter is slower than legacy-interpreter makes mutable functions slower, but
that doesn’t seem to have had a clear impact on the performance of any JIT Kernel configurations other
than interpreter. That’s probably because mutable functions are rare.

8.2 PyPy vs CPython

Measuring Modelverse program run-times for CPython was somewhat problematic because it slowed
down programs to the point where taking ten samples of each benchmark’s run-time – as was done for
the PyPy runtime – proved infeasible.

Worse, CPython runs were so slow that they caused client-side request timeouts on the mvc simulate

benchmark.

27

dict
ite

ra
te

fibonac
ci

m
atr

ix
gau

ss
jord

an

m
vc prin

t upload

m
vc sim

ulat
e

0

0.2

0.4

0.6

0.8

1

1 1 1 1 1

0.
76

0.
73

0.
64

0.
78 0.

81

0.
27

0.
18

0.
15 0.
15

0.
1

0.
2

0.
12

6.
69
·
10
−

2

0.
1

3.
44
·
10
−

2

0.
26

0.
13

6.
8
·
10
−

2

0.
15

2.
98
·
10
−

2

0.
17

9.
99
·
10
−

2

5.
69
·
10
−

2

0.
13

2.
8
·
10
−

2

0.
23

0.
14

6.
62
·
10
−

2

0.
12

2.
52
·
10
−

20.
2

0.
12

0.
12

9.
11
·
10
−

2

2.
47
·
10
−

20.
2

0.
12

6.
07
·
10
−

2

8.
53
·
10
−

2

2.
17
·
10
−

2

R
un

-t
im

e
+

co
m

pi
le

-t
im

e
(r

el
at

iv
e)

interpreter
legacy-interpreter
bytecode-interpreter
baseline-jit
adaptive-jit-favor-large-functions
adaptive-jit-favor-loops
fast-jit
adaptive-jit-favor-small-functions
adaptive-jit-favor-small-loops

Figure 7: Comparison of relative Kernel performance on a single simulation benchmark. Error bars
represent 95% confidence intervals.

The mvc print upload benchmark was used as a substitute for mvc simulate because these two
benchmarks have similar relative run-times, as shown in figure 7. mvc print upload is a lot smaller
than the simulation benchmark, but its run-time on CPython was almost as large as the simulation
benchmark’s on PyPy.

Figure 8(a) compares PyPy and CPython performance on mvc print upload and figure 8(b) shows
the same measurements, but this time expressed as run-time relative to the interpreter configuration’s
run-time.

One thing that’s interesting about figure 8(b) is how it suggests that CPython disproportionately
affects the interpreter-based Kernel configurations, further widening the divide between the JITs and the
interpreters. Additionally, the large function–favoring heuristic seems to be particularly ineffective on
CPython. So far, no explanation has been found for this phenomenon.

28

PyPy CPython
0

50

100

150

200

12
28

.0
5

72
3.

41

42
2.

53

20
5.

56
16

0.
42

31
.4

7

11
1.

11

20
.6

7

29
.4

5

31
.3

27
.4

9

65
.3

5

24
.6

2

62
.8

18
.7

4

26
.3

5

17
.5

4

23
.7

1

R
un

ti
m

e
[s

]

interpreter
legacy-interpreter
bytecode-interpreter
baseline-jit
adaptive-jit-favor-large-functions
adaptive-jit-favor-loops
fast-jit
adaptive-jit-favor-small-functions
adaptive-jit-favor-small-loops

(a) Comparison of absolute CPython and PyPy performance, capped at 210 seconds. Error bars represent 95% confidence
intervals.

PyPy CPython
0

0.2

0.4

0.6

0.8

1

1 1

0.
78

0.
59

0.
15

9.
05
·
10
−

2

0.
1

2.
4
·
10
−

2

0.
15

0.
34

0.
13

5.
32
·
10
−

2

0.
12

5.
11
·
10
−

2

9.
11
·
10
−

2

2.
15
·
10
−

2

8.
53
·
10
−

2

1.
93
·
10
−

2R
un

ti
m

e
(r

el
at

iv
e)

(b) Comparison of relative CPython and PyPy performance. Error bars represent 95% confidence intervals.

Figure 8: Comparison of CPython and PyPy performance on the mvc print upload benchmark.

29

9 Potential issues

As evidenced by the performance measurements in this report, JIT compilation is a feasible way to
improve performance.

The thing to keep in mind, however, is that this performance is achieved by bringing Modelverse
programs closer to the hardware. JIT compilation can improve performance, but it relies on local machine
resources to do so. That can present issues when machine resources get exhausted.

9.1 Infinite recursion

One issue is infinite recursion. If code related to debugging were to be deleted from the legacy interpreter,
then it would – given a Modelverse State implementation that has no bounds on the amount of nodes it
can allocate – be able to recurse practically forever.

The JIT is not so fortunate: it relies on the request handler to construct an in-memory stack of generator
functions that are currently running.

A program that recurses forever will be limited by the size of the request handler’s stack. Using JIT
compilation makes machine memory the limiting factor, regardless of how much storage the Modelverse
State offers.

9.2 Function definition overflow

Another potential issue is that all compiled functions are stored in-memory. It is technically not impossible
to exhaust the machine’s storage capacity by defining and calling ever more functions.

Again, the Modelverse State offers no solace in this situation, because compiled function bodies live
outside of it.

A potential solution to this issue might be to reduce the temperature of functions as they are left
unused. Once functions become sufficiently cold, their compiled versions can be erased from the JIT’s
global scope.

This solution also requires compiled function calls to check if compiled versions of their callees exist
and re-compile them if they don’t. That’s more or less equivalent to what an indirect call does and might
incur significant overhead.

9.3 Existing non-scalable constructs

The previous two sub-sections would suggest that the JIT impairs the Modelverse’s ability to scale in
some situations. This is true, but not entirely unprecedented.

There are other constructs in the Modelverse that cannot scale to truly enormous amounts of data;
they generally make the same trade-off. For example, the read-dictionary-keys (RDK) Modelverse State
request is a useful operator that will always be limited by the amount of data that can be stored on the
current machine.

Issuing an RDK request with a huge dictionary as argument seems like a fair strategy to kill the
Modelverse.

10 Related work

The adaptive Modelverse JIT can be classified in the relatively narrow category of tiered, whole-function
just-in-time compilers. Building such a JIT is usually a large undertaking, so every big JIT is bound to
have a few unique properties.

This section compares the techniques used by the Modelverse JITs as described in this report with
those of some well-known (just-in-time) compilers.

30

10.1 PyPy

According to the PyPy website: “PyPy is a fast, compliant alternative implementation of the Python
language.2”

Its implementation strategy is discussed in [2]. To summarize: PyPy includes both an interpreter and
a tracing JIT. These two components interact to coax the tracing JIT into unrolling the interpreter loop in
such a way that Python loops are compiled as traces.

PyPy’s novel approach differs significantly from the more orthodox strategy used by the Modelverse
JITs, which compile whole functions instead of traces and do not attempt to JIT-compile the interpreter
loop.

The adaptive Modelverse JIT and PyPy are similar in the sense that both have a bytecode interpreter
and a JIT, though the Modelverse JIT also has a reference interpreter and more than one JIT.

Furthermore, PyPy’s JIT produces machine code, which is not the case for the Modelverse JITs: they
produces Python code instead.

10.2 LLVM

LLVM’s website describes the project as: “The LLVM Project is a collection of modular and reusable
compiler and toolchain technologies. Despite its name, LLVM has little to do with traditional virtual
machines, though it does provide helpful libraries that can be used to build them.3”

I will not focus on virtual machines derived from LLVM in this section, as I would much rather
compare the Modelverse fast JIT’s internals to LLVM’s.

The fast JIT does not use the same data structures as LLVM, but there is significant overlap between
the two projects. For example, representing local variable loads and stores as pointer loads and stores
followed by SSA construction on this form is a common feature of both compilers.

A reasonable example of a dissimilarity between the fast JIT and LLVM is how phi-functions from SSA
form are implemented. LLVM includes an explicit phi instruction that directly represents a phi-function
[6] whereas the Modelverse fast JIT represents them as block parameters and branch arguments. Each
approach has its advantages and disadvantages.

Moreover, LLVM targets machine code like PyPy, whereas the Modelverse JITs generate Python
source code.

10.3 WebKit JavaScript engine

WebKit is the open-source web browser engine that powers, among others, the Safari browser on Mac OS
X and iOS. Like its competitors, it includes a JavaScript virtual machine.

The WebKit JavaScript engine is structured similarly to that of the new Modelverse Kernel: it includes
four tiers, three of which perform classic, whole-function JIT compilation. Each tier produces faster code
at a slower pace. [1]

But the WebKit JITs are a lot more advanced than the Modelverse JITs, especially when it comes to the
interactions between JITs. In particular, WebKit’s JITs support on-stack replacement (OSR), an optimization
that re-compiles the currently active function with a different JIT and jumps to the new, faster code.

As usual, I should mention that the WebKit JITs generate machine code; the Modelverse JITs produce
Python source code.

11 Conclusion

The new Modelverse Kernel with JIT compilation is a drop-in replacement for the legacy Modelverse
Kernel, which relied solely on a reference interpreter. The new Kernel works for all known tests and
offers a significant performance boost.

For the presumably representative mvc simulate benchmark, mean total run-time went down from
approximately 1292 seconds (legacy interpreter) to about 35 seconds (adaptive JIT, favor small loops) –
that’s ∼37 times faster!

2PyPy website: http://pypy.org/. Accessed: March 24 2017.
3LLVM website: http://llvm.org/. Accessed: March 24 2017.

31

http://pypy.org/
http://llvm.org/

However, JIT compilation is no silver bullet. It creates issues of its own with regard to machine
resources, especially memory. In a way, using the JIT trades some data scalability for a lot of performance
scalability.

11.1 Future work

The Modelverse JITs can run the Modelverse’s test suite without fail at a much faster pace than the legacy
interpreter, but there is still ample room for improvement.

For starters, the various JITs could use a lot more testing. Finding bugs in compilers is often hard
because they usually don’t manifest directly but instead subtly change the program’s meaning. It would
be hubristic to assume that there are no bugs in the Modelverse Kernel presented in this report, but they
are hard to find because it’s hard to know where to look.

Inlining would be a welcome addition to the fast JIT because it might deliver a large performance
boost. This is mostly because the current calling convention incurs a lot of overhead.

Finally, it is potentially very profitable to create a module that lowers CFG IR to LLVM IR and
compiles the latter to native code, though this would likely be a lot of work to integrate properly with the
current Modelverse implementation, which relies extensively on Python’s yield-expressions to perform
basic services.

Acknowledgements

I would like to thank Yentl Van Tendeloo for supervising my project as described in this report, for his
feedback on this report and for contributing a description of the mvc simulate benchmark, which has
been included in section 8.

I also want to thank Prof. Dr. Hans Vangheluwe for giving me the opportunity to do this project as
part of my honors program at the University of Antwerp.

References

[1] Introducing the WebKit FTL JIT. https://webkit.org/blog/3362/

introducing-the-webkit-ftl-jit/. Accessed: March 24 2017.

[2] Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. Tracing the meta-level: PyPy’s tracing JIT compiler.
In Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (2009), ACM, pp. 18–25.

[3] Braun, M., Buchwald, S., Hack, S., Leißa, R., Mallon, C., and Zwinkau, A. Simple and efficient
construction of static single assignment form. In International Conference on Compiler Construction
(2013), Springer, pp. 102–122.

[4] Cooper, K. D., Harvey, T. J., and Kennedy, K. A simple, fast dominance algorithm. Software Practice
& Experience 4, 1-10 (2001), 1–8.

[5] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS) 13, 4 (1991), 451–490.

[6] Lattner, C., and Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004 International Symposium on Code Generation and Optimization
(CGO’04) (Palo Alto, California, March 2004).

[7] Schilling, J. L. The simplest heuristics may be the best in Java JIT compilers. ACM Sigplan Notices 38,
2 (2003), 36–46.

[8] Van Tendeloo, Y. Foundations of a Multi-Paradigm Modelling Tool. In MoDELS ACM Student
Research Competition (2015), pp. 52–57.

32

https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
http://camlunity.ru/swap/Library/Computer%20Science/Metaprogramming/Compilers/Tracing%20the%20Meta-Level%2c%20PyPy%e2%80%99s%20Tracing%20JIT%20Compiler.pdf
https://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
https://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
http://www.cs.rice.edu/~keith/Embed/dom.pdf
http://dl.acm.org/citation.cfm?id=115320
http://dl.acm.org/citation.cfm?id=115320
http://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
http://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
http://www.sco.com/developers/java/news/jit-heur.pdf
http://msdl.cs.mcgill.ca/people/yentl/papers/2015-SRC.pdf

[9] Van Tendeloo, Y., Barroca, B., Van Mierlo, S., and Vangheluwe, H. Modelverse specification. Tech.
rep., Universiteit Antwerpen, August 2016.

33

http://msdl.cs.mcgill.ca/people/yentl/files/Modelverse.pdf

	Introduction
	Background: the Modelverse
	Modelverse State
	Modelverse Kernel
	Interpreting a constant instruction

	Server
	Nop: a special kind of request

	A Modelverse Kernel with JIT compilation
	Problem statement
	Cause of the problem
	High-level approach

	Bytecode IR interpreter
	Performance

	Baseline JIT
	Bytecode IR to tree IR
	Tree IR optimizations
	Nop and GC root insertion
	Nop insertion
	GC root insertion

	Request handler
	Legacy function call idiom
	Request handler function call idiom

	Source maps
	Thunks
	Compile-everything strategy
	Selective, thunk-based compilation

	Performance
	Shortcomings

	Fast JIT
	Bytecode IR to CFG IR
	SSA form
	Textual CFG IR

	CFG IR optimizations
	Flow instruction optimizations
	Local definition check elision
	Block merging
	Trivial phi elimination
	SSA construction
	Direct call optimization
	Data structure optimizations
	CFG IR intrinsic expansion
	Performing reads at compile-time
	Read commoning
	Constant folding
	Dead code elimination

	Nop and GC root insertion
	Nop insertion
	GC root insertion and elision

	An overview of the pass pipeline
	CFG IR to tree IR
	Performance

	Adaptive JIT
	Function temperature heuristics
	Favor large functions
	Favor small functions
	Favor loops
	Favor small loops

	Performance
	Calling convention: GC compatibility

	Performance evaluation
	A note on interpreter and legacy-interpreter
	PyPy vs CPython

	Potential issues
	Infinite recursion
	Function definition overflow
	Existing non-scalable constructs

	Related work
	PyPy
	LLVM
	WebKit JavaScript engine

	Conclusion
	Future work

