
FlashFreeze: Low-Overhead JavaScript

Instrumentation for Function Serialization

Jonathan Van der Cruysse
Ghent University
Ghent, Belgium

jonathan.vdc@outlook.com

Lode Hoste
Nokia Bell Labs

Antwerp, Belgium
lode.hoste@nokia-bell-labs.com

Wolfgang Van Raemdonck
Nokia Bell Labs

Antwerp, Belgium
wolfgang.van_raemdonck@nokia-

bell-labs.com

Abstract

Object serialization is important to a variety of applications,
including session migration and distributed computing. A
general JavaScript object serializer must support function
serialization as functions are first-class objects. However,
JavaScript offers no built-in function serialization and limits
custom serializers by exposing no meta operator to query
a function’s captured variables. Code instrumentation can
expose captured variables but state-of-the-art instrumenta-
tion techniques introduce high overheads, vary in supported
syntax and/or use complex (de)serialization algorithms.

We introduce FlashFreeze, an instrumentation technique
based on capture lists. FlashFreeze achieves a tiny run time
overhead: an Octane score reduction of 3% compared to 76%
for the state-of-the-art ThingsMigrate tool and 1% for the
work-in-progress FSM tool. FlashFreeze supports all self-
contained ECMAScript 5 programs except for specific uses
of eval, with, and source code inspection. FlashFreeze’s
construction gives rise to simple (de)serialization algorithms.

CCS Concepts • Software and its engineering → Pre-

processors; Procedures, functions and subroutines; Runtime
environments.

Keywords JavaScript, TypeScript, Closures, Serialization,
Instrumentation, Compilers
ACM Reference Format:

Jonathan Van der Cruysse, Lode Hoste, and Wolfgang Van Raem-
donck. 2019. FlashFreeze: Low-Overhead JavaScript Instrumenta-
tion for Function Serialization. In Proceedings of the 4th ACM SIG-
PLAN International Workshop on Meta-Programming Techniques and
Reflection (META ’19), October 20, 2019, Athens, Greece. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3358502.3361268

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
META ’19, October 20, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6985-5/19/10. . . $15.00
https://doi.org/10.1145/3358502.3361268

1 Introduction

Serialization, the practice of encoding in-memory objects in
such a way that they can be saved, transmitted and restored,
is an invaluable tool for a range of applications including
web session migration and distributed computing [10, 20].

The main challenge in serializing JavaScript objects is that
of function serialization: JavaScript functions are first-class
objects. Hence, any serializer for arbitrary objects must by
definition be able to serialize functions. JavaScript functions
consist of a function definition and a set of captured variables.
A function’s definition can be queried by a serializer using
an API from the ECMAScript standard [9] for JavaScript, but
there is no analogous API for querying captured variables.

State-of-the-art JavaScript serialization techniques either
rewrite the JavaScript source code that defines the function
to serialize or modify the virtual machine (VM) in which
it executes [20, 22]. In both cases, the modifications make
captured variable sets accessible to serializers at run time.

The source code rewriting approach—also known as instru-
mentation—is particularly convenient because it also applies
in situations where using a modified VM is not an option, as
is the case with, e.g., an end user–installed web browser.

However, state-of-the-art instrumentation-based JavaScript
serializers incur considerable size and run time overhead
compared to unmodified code. We refer to this penalty as
static overhead. In this paper, we focus on minimizing static
overhead. To that end, we make the following contributions:

• We introduce the novel FlashFreeze instrumentation
strategy in section 3. The strategy is based on the no-
tions of capture lists and by-value capture. It minimizes
static overhead by taking a lazy approach to captured
variable retrieval.

• In section 4, we compare FlashFreeze’s design choices
with those of other JavaScript function serializers.

• We quantify FlashFreeze’s static overhead in section 5
using the Octane benchmark suite. For comparison,
we do the same for ThingsMigrate [10] and FSM [18].

2 Motivation

Previous work indicates that there exists a large class of Java-
Script applications for which arbitrary object serialization is
a natural if not indispensable component [10, 19, 20, 22].

31

https://doi.org/10.1145/3358502.3361268
https://doi.org/10.1145/3358502.3361268

META ’19, October 20, 2019, Athens, Greece Jonathan Van der Cruysse, Lode Hoste, and Wolfgang Van Raemdonck

The seminal Imagen project [20] appears to be the first
JavaScript function serializer that preserves lexical scopes.
Imagen emerged as a means to take application snapshots: se-
rialized versions of a web page’s state that can be transferred
and restored. To create snapshots, Imagen treats the state of
a web page as an object graph to serialize. Such a graph may
include function objects, which Imagen can serialize after
first rewriting the web page’s JavaScript source code.
Application snapshot creation has since sparked the ap-

pearance of other instrumentation-based serializers such as
Fast Snaphot Migration (FSM) [18] as well as completely
different approaches to JavaScript function serialization, in-
cluding the use of modified JavaScript VMs [19, 22].

The ThingsMigrate project likewise implements arbitrary
object graph serialization, but for a different, emerging use
case: distributed computing [10]. ThingsMigrate is designed
to transparently transfer stateful applications from one Internet
of Things (IoT) device to another, as necessitated by, e.g.,
resource constraints. To transfer an application, ThingsMi-
grate creates a snapshot of the application’s current state,
transmits that snapshot, and restores it on another device.
A related scenario shows up in the World Wide Streams

(WWS) distributed computing platform [27]. A master node
serializes a function along with its dependencies and trans-
mits it to a number of worker nodes. The workers deserialize
the function with proper scope context and execute it.

JavaScript is not the only language for which distributed
computing has motivated the emergence of function seri-
alization. For example, Distributed Smalltalk can migrate
objects along with the classes describing their behavior [4].
Similarly, Apache Ignite for Java supports peer class load-
ing: when an object is moved between hosts, the bytecode
describing that object’s class is transferred as well [6]. Like-
wise, PyWren is a function-as-a-service (FaaS) library that
serializes Python functions to execute them in the cloud [16].
However, JavaScript function serialization warrants spe-

cial treatment because captured variables cannot be inspected
in JavaScript. This is unlike many other contemporary pro-
gramming languages such as Python and Java, which do
allow serializers to inspect captured variables.

2.1 Limitations of JSON

JavaScript runtimes include native support for serialization
and deserialization using JSON. However, these serialization
and deserialization routines have a number of fundamental
limitations that make them incapable of directly serializing
arbitrary object graphs:

1. JSON serialization routines turn object graphs into
object trees, resulting in object duplication on deseri-
alization.

2. JSON serialization does not support cyclic object graphs.
3. JSON cannot serialize certain types of objects including

functions.

1 function add(x, y) { return x + y; }
2 function twice(x) { return add(x, x); }

Listing 1. Simple variable capture: function twice captures
add.

1 function add(x, y) { return x + y; }
2 function twice(x) { return add(x, x); }
3 twice.__closure = () => ({add});

Listing 2. An instrumented version of Listing 1, using cap-
ture lists. Instrumentation code is highlighted. The ECMA-
Script 2015 {add} shorthand object literal syntax is equiva-
lent to the more explicit {add: add} [9].

The first and second points are easily addressed by switch-
ing to a serialization format that can represent arbitrary
graphs of objects, rather than just trees [7, 8]. YAML is an
example of such a format [3].

The third issue is much harder to resolve. In order to seri-
alize a JavaScript function, we need access to the state that
constitutes a function object, that is, the function’s defini-
tion and its list of captured variables. ECMAScript-compliant
JavaScript code can access the former, but not the latter. This
rules out arbitrary function serialization based on current
JavaScript specifications and implementations.

Listing 1 illustrates how ubiquitous variable capture is in
JavaScript: function twice calls add and implicitly captures
add in the process. To serialize twice, a serializer needs to
first know that add is captured by twice and then serialize
add as well. While twice clearly captures add, this informa-
tion is not available to a serializer at run time.

3 FlashFreeze

FlashFreeze’s core idea is to equip every variable-capturing
functionwith a list of captured variables—a capture list. These
capture lists can then be inspected at run time to serialize
the functions they belong to.
To ensure that every variable-capturing function has a

capture list, FlashFreeze instruments function definitions in
the source code it processes. Specifically, FlashFreeze anno-
tates every function definition with an additional nullary
function that, when invoked, generates a capture list for the
original function. The use of such a capture list generator
delays capture list creation until necessary for serialization.
Listing 2 shows our approach in action by applying it to

our earlier example. In Listing 2, the twice function cap-
tures add and hence FlashFreeze has attached a capture list
generator to twice’s __closure property.

Serializing a FlashFreeze-instrumented function is straight-
forward: the serializer serializes both the function’s defini-
tion and its capture list, which the serializer generates on
demand. The process of deserializing such a representation is

32

FlashFreeze META ’19, October 20, 2019, Athens, Greece

less obvious but equally simple to implement. To deserialize
a function object, it suffices to place its definition in a scope
in which the names of captured variables are assigned values
obtained by decoding the serialized capture list.

3.1 Capture Lists

We define a capture list of a function f to be a dictionary
Cf that maps the names of f ’s captured variables to those
variables’ values. To construct a capture listCf , we compute
the set difference of the variable names referenced by f and
the variable names defined by f . The capture list maps the
resulting set of variables names to their values.
We opt to materialize capture lists lazily: a serializer can

create capture lists on demand by invoking any variable-
capturing function’s capture list generator, injected ahead
of time by FlashFreeze. We assign this capture list generator
to the function’s __closure property.
The state of the art in instrumentation techniques for se-

rialization is to populate lexical scope descriptions eagerly
[10, 18, 20]. Transposed to capture lists, this would corre-
spond to updating the values in capture lists every time they
change. In synthesizing capture list generators, we sidestep
the creation and management of scope-like data structures
and instead leverage the VM’s highly optimized native vari-
able capture implementation to track variables.

3.2 Serialization

To accurately represent arbitrary objects, FlashFreeze en-
codes serialized objects in a graph data structure, the seri-
alization graph. Every object reachable from the value to
serialize corresponds to a node in the graph and may refer to
other nodes in the graph. A single “root” node identifies the
serialized value represented by the graph. All other nodes in
the graph are the root’s transitive dependencies.
FlashFreeze uses a small number of specialized serializa-

tion graph node types to encode JavaScript objects. Different
types of objects—from normal objects to regular expressions,
arrays and built-in objects—each have dedicated node types.

User-defined functions are no exception. A function node
in the serialization graph consists of a function’s body, any
user-defined properties, and a capture list. The ECMAScript
specification provides access to the former two via the re-
flection functions Function.prototype.toString() and
Object.getOwnPropertyNames() [9]. A capture list can be
obtained by evaluating a FlashFreeze-instrumented func-
tion’s __closure property.
Built-in functions such as Math.sin do not have a Java-

Script implementation, so we cannot serialize them by en-
coding their function bodies. We overcome this limitation
by including an automatically-generated list of built-in func-
tions and objects in the serializer. Whenever an entry in
this list is to be serialized, the serializer instead encodes the
builtin’s name. A deserializer with a compatible list of built-
ins maps that name to its runtime’s version of the builtin.

1 function wrapper(add) {
2 return function twice(x){return add(x, x);};
3 }

Listing 3.Generated deserialization code for function twice
from Listing 2.

3.3 Deserialization

To deserialize a serialization graph, we first create one dese-
rialized object per node in the graph and then populate those
objects by deserializing the nodes individually. We finally
return the object that corresponds to the graph’s root.

In this deserialization scheme, function deserialization is
no special case. To deserialize a function, we inject that func-
tion’s source code into a specially-constructed scope that
defines the function’s captured variables and maps them to
their deserialized values. To create such a scope, FlashFreeze
wraps the function in another function that takes the ele-
ments of the capture list as arguments. Listing 3 shows what
the deserializer’s generated code looks like. To instantiate the
wrapped function, we deserialize the capture list’s elements
and call the wrapper function with those elements.

A naive application of the aforementioned approachworks
well when inter-function dependencies form a directed acyclic
graph (DAG). However, it breaks down when two functions
capture each other, as is the case with mutually recursive
functions. Such functions introduce a chicken and egg prob-
lem: when one function captures another function that itself
captures the first function to deserialize, we find ourselves in
a situation where we cannot deserialize either function due
to a cyclic dependency because a call to a wrapper function
as in Listing 3 requires a full list of deserialized objects.
To support cyclic dependencies in functions, we asso-

ciate every deserialized function with a thunk: a function
object with a body that forwards its arguments to a call to
a specially-designated callee property of the thunk. This
thunk is created first and its callee property is deserialized
later. This allows the thunk to be used as an argument to a
wrapper function without requiring the thunk’s callee to be
deserialized first, solving the chicken and egg problem. To
preserve the identity property of objects, all other references
to the thunk’s callee are also redirected to the thunk.

Once a function’s body and captured variables have been
deserialized, any user-defined properties are deserialized as
well and attached to the thunk object.

3.4 A Note on Mutated Variables

By mapping the names of captured variables to their values
in its deserialization algorithm, FlashFreeze implements by
value capture: every deserialized function gets its own, iso-
lated copy of every captured variable. However, the ECMA-
Script standard [9] mandates by reference capture: functions
that share a variable can update it and observe the updated

33

META ’19, October 20, 2019, Athens, Greece Jonathan Van der Cruysse, Lode Hoste, and Wolfgang Van Raemdonck

1 function counter() {
2 var c = 0;
3 var inc = add => c += add;
4 var get = () => c;
5 return {inc, get};
6 }

Listing 4.A JavaScript function that creates a counter object.

1 function counter() {
2 var c = {value: undefined};
3 c.value = 0;

4 var inc = add => c.value += add;

5 inc.__closure = () => ({c});

6 var get = () => c.value;

7 get.__closure = () => ({c});
8 return {inc, get};
9 }

Listing 5. The same code as in Listing 4, instrumented by
FlashFreeze. Added and modified lines are highlighted.

value. This behavior can be observed in Listing 4, which uses
by reference capture to create counter objects.

To resolve the conflict between by value and by reference
capture, we note that the two variable capture techniques
are functionally equivalent for constant variables, that is,
variables that are initialized once and don’t change after
that point. Only mutated captured variables can expose the
difference between by value and by reference capture.
FlashFreeze harmonizes its by value capture with Java-

Script’s by reference capture by applying assignment con-
version [1] to mutated captured variables prior to the instru-
mentation pass. Assignment conversion replaces a mutable
variable with a constant “cell:” an object that contains a sin-
gle property representing its value. The contents of such a
cell may be mutated, but the cell reference is constant.

To minimize assignment conversion’s run time overhead,
FlashFreeze statically analyzes its input code and converts
only those variables that are both captured and mutated.

Listing 5 shows what the final result looks like in practice
when applied to Listing 4: the value stored in the c variable
is set to a cell object when c is defined and all other accesses
to c are rewritten as accesses to the cell. This transformation
makes c constant and hence makes the distinction between
by value and by reference capture disappear.

3.5 Properties

FlashFreeze’s construction offers two desirable, related prop-
erties that previous instrumentation-based approaches do
not have, because they are based on scope descriptions rather
than capture lists. The first property, precision, is that a cap-
ture list is an exact description of a function’s dependencies:

1 class Vector2 {
2 constructor(x, y) {
3 this.x = x;
4 this.y = y;
5 }
6 get length() {
7 return Math.sqrt(
8 this.x * this.x + this.y * this.y);
9 }
10 }

Listing 6. A simple ECMAScript 2015 class definition.

no element in a function’s capture list is not captured by the
function. Thanks to this property, a serializer can effectively
serialize a single function and its dependencies without in-
cluding unnecessary variables from the function’s enclosing
scopes. This is particularly useful for distributed computing
workloads where standalone functions are exchanged.

Another useful property of FlashFreeze is that it preserves
the safe for space property [25]. That is, FlashFreeze’s lazy
capture lists do not impose additional restrictions on garbage
collection. All objects kept live by capture list generators are
already live by virtue of being captured by the generators’
associated functions. When a function becomes dead, so does
its capture list generator.

3.6 Limitations

We posit that FlashFreeze’s instrumentation construction
is semantics-preserving for self-contained ECMAScript 5–
conforming [9] JavaScript files that do not use eval to refer
to captured variables; do not use with to refer to getter/setter-
backed properties; and are agnostic to syntactic source code
changes. We will substantiate this claim in section 5 by ap-
plying FlashFreeze to the Octane benchmark suite, a large
body of ECMAScript 5 code. The self-containedness require-
ment is due to FlashFreeze’s processing of files in isolation;
replacing a global variable by a cell in one file does not imply
that the same variable is replaced by a cell in another file.
Most features from later standards can be transpiled to

ECMAScript 5–conforming JavaScript code [23]. Since Flash-
Freeze supports ECMAScript 5, it can also handle all tran-
spilable features by extension as long as the transpilation
process happens before FlashFreeze’s instrumentation code
is introduced. Even advanced features such as classes are
amenable to instrumentation via transpilation. For instance,
consider Listing 6, which defines a class that represents a
two-dimensional vector. Transpiling and instrumenting it
produces Listing 7. The instrumentation code in Listing 7
correctly identifies the two variables captured by Vector2’s
class definition: Object and Math.
ECMAScript 2015 modules [9] cannot be transpiled in

the same way and represent a limitation to FlashFreeze’s

34

FlashFreeze META ’19, October 20, 2019, Athens, Greece

1 var _a;
2 var Vector2 = ((_a = function () {
3 var _e;
4 function Vector2(x, y) {
5 this.x = x;
6 this.y = y;
7 }
8 Object.defineProperty(
9 Vector2.prototype, "length", {
10 get: (_e = function () {
11 return Math.sqrt(
12 this.x * this.x + this.y * this.y);
13 }, _e.__closure = () => ({Math}), _e),
14 enumerable: true,
15 configurable: true
16 });
17 return Vector2;
18 }, _a.__closure = ()=>({Object,Math}),_a)());

Listing 7. Transpiled and instrumented class definition. In-
strumentation code is highlighted.

instrumentation technique. On the one hand, they allow
FlashFreeze to assume that files are self-contained, eliminat-
ing the issue of global variable assignment conversion. But
on the other hand, they introduce an all but equivalent prob-
lem: mutated variables exported by a module. Such mutated
variables are equally dangerous to assignment convert due
to FlashFreeze’s file-by-file approach.
In practice, we have not encountered mutated module-

exported variables in the workloads to which we have ap-
plied FlashFreeze, but we do consider this to be a serious
limitation. In the future, we plan to remove it by rewriting
global variables as special properties of their modules.

There are three other inherent limitations to FlashFreeze’s
approach. First, the eval function may inspect or modify
a captured variable. Whether an eval call will do so is in
general not known until said call. FlashFreeze assumes that
eval never interacts with captured variables, an assumption
that a pathological program can violate. We believe this is
a mostly theoretical issue as using eval is considered bad
practice and having eval interact with locals doubly so [11].

A second limitation relates to JavaScript’s with statement.
FlashFreeze assumes that all unqualified names refer to vari-
ables when synthesizing capture list generators, an assump-
tion that may be violated if with is used to introduce a
getter/setter-backed property into a scope as an unqualified
name. We do not consider this to be a serious issue as using
with is discouraged and forbidden in strict mode [9, 24].

The third limitation is that FlashFreeze, like any technique
rooted in instrumentation, cannot support programs that
inspect their own source code. Indeed, FlashFreeze changes
said source code.

3.7 Implementation

We implemented FlashFreeze’s instrumentation construc-
tion as a pair of TypeScript compiler transforms [28], which
are available as open-source software.1 The first transform
performs assignment conversion, the second one attaches
capture list generators to variable-capturing functions. The
TypeScript compiler accepts a superset of JavaScript code,
so our implementation applies to both languages [5].

4 Related work

In this section, we will discuss two strands of related work:
VM extensions and source-to-source rewriters.

4.1 VM Extensions for Function Serialization

Arguably the most direct way to give JavaScript applications
access to captured variables is to extend a JavaScript VM
with an API for querying captured variables.

Oh et al. [22] retrofitted Chrome’s V8 JavaScript runtime
[13] with an API to query captured variables. They then im-
plemented a web application snapshotting tool as a browser
extension that relies on their custom API.
Kwon and Moon [19] customized WebKit [2] to include

a similar API and implemented snapshotting logic in Java-
Script based on their custom API. Their snapshotting tool
supports more complex applications than Oh et al.’s work.

Customizing a VM has some key advantages: it opens the
door to low static overhead serialization and does not re-
quire JavaScript code to be rewritten. The main drawback
to nonstandard VM modifications is that they require appli-
cation developers to have a large degree of control over the
software on the user’s machine. That is not always the case.

4.2 Source-to-Source Rewriters

Source-to-source rewriters overcome the lack of captured
variable information at run time without resorting to VM
modifications. They instead rewrite source code to embed ad-
ditional information so serializers can query functions’ cap-
tured variables. FlashFreeze is a source-to-source rewriter.

4.2.1 Imagen

Imagen [20] instruments code with statements that at run
time generate data structures describing lexical scopes. These
lexical scope descriptions correspond closely to variable cap-
ture as specified by ECMAScript [9]. FlashFreeze’s capture
lists, on the other hand, are similar to how variable capture
works in the C++ programming language specification [15].

Listing 8 shows what Imagen’s construction looks like
when applied to our example from Listing 1. The scope
object describes the lexical scope in which add and twice
are defined. When instructed to serialize a function, Imagen
queries the function’s parentScope property to generate

1See https://github.com/nokia/ts-serialize-closures.

35

https://github.com/nokia/ts-serialize-closures

META ’19, October 20, 2019, Athens, Greece Jonathan Van der Cruysse, Lode Hoste, and Wolfgang Van Raemdonck

1 var scope = new Object();
2 function add(x, y) { return x + y; }
3 scope.add = add;

4 add.parentScope = scope;
5 function twice(x) { return add(x, x); }
6 twice.parentScope = scope;

Listing 8. Imagen’s instrumentation construction, applied
to Listing 1. Instrumentation code is highlighted.

1 function counter() {
2 var scope = new Object();
3 var c = 0;
4 scope.c = c;
5 var inc = add => {
6 c += add;
7 scope.c = c;
8 return c;
9 };
10 inc.parentScope = scope;
11 var get = () => c;
12 get.parentScope = scope;
13 return {inc, get};
14 }

Listing 9. Imagen’s instrumentation construction, applied
to Listing 8. Instrumentation code is highlighted.

code that reconstructs the function to restore as well as its
enclosing scopes. Running the code deserializes the function.

Imagen’s approach is fundamentally eager. Lexical scope
descriptions are created and populated regardless of whether
they are actually used. Listing 9 exemplifies this behavior:
every time the c variable is updated, scope.c is also updated.
Due of this eagerness, the overhead associated with lexical
scope descriptions applies as much to function objects that
are never serialized as to the ones that are serialized.

4.2.2 ThingsMigrate

ThingsMigrate [10] is a recent project that also implements
function serialization by instrumenting source code files.
ThingsMigrate’s instrumentation construction was ini-

tially roughly the same as Imagen’s [10, 20]. The latest ver-
sion of ThingsMigrate [17] uses a slightly different construc-
tion that no longer eagerly updates captured variables when
they change. Lexical scope descriptions are still created ea-
gerly by the new construction. Listing 10 applies ThingsMi-
grate’s new construction to our running example.
ThingsMigrate’s construction calls into a JavaScript run-

time library to construct scope descriptions. Source code
instrumented by ThingsMigrate depends on that library; in-
strumented files will not execute without it. Imagen and
FlashFreeze do not introduce such dependencies.

1 Σ.setExtractor(() => this.capture({}, {}))

2 .hoist(add, Σ).hoist(twice, Σ);
3 function add(x, y) {
4 var Σ_add = new Σ.Scope(
5 this, Σ, add, () =>

6 this.capture({x, y}, {}));
7 return x + y;
8 }
9 function twice(x) {
10 var Σ_twice = new Σ.Scope(
11 this, Σ, twice, () =>

12 this.capture({x}, {}));
13 return add(x, x);
14 }

Listing 10. ThingsMigrate’s new instrumentation construc-
tion, applied to Listing 1. Instrumentation code is high-
lighted.

1 var $fsm1 = $fsm.create();
2 $fsm1.add = function add(x, y) {return x+y;}
3 $fsm1.twice = function twice(x) {
4 return $fsm1.add(x, x);
5 }

Listing 11. FSM’s instrumentation construction, applied to
Listing 1. This example assumes that add and twice are not
global variables.

ThingsMigrate’s authors discovered that Imagen’s serial-
ization algorithm does not support nested variable-capturing
functions [10]. To correctly serialize such functions, ThingsMi-
grate implements a more complex serialization algorithm
that reasons about trees of scopes; Imagen only considers
scope chains, that is, paths in scope trees.

4.2.3 Fast Snapshot Migration

FSM [18] is a low-overhead instrumentation construction
for creating lexical scope descriptions. Whereas Imagen’s
construction maintains mirror versions of lexical scopes,
FSM replaces each lexical scope with an object and rewrites
all variable accesses to use that object. Listing 11 applies
FSM to our running example.
A notable exception is the global scope: FSM accesses

globals by cleverly inspecting the JavaScript VM’s global ob-
ject. Hence, FSM need not instrument functions that refer to
globals only. As we will show in the evaluation section, this
approach pays dividends for FSM on the Octane benchmark
suite. Indeed, only two FSM-instrumented benchmarks—Box2D
and RegExp—show significant Octane score reductions com-
pared to the uninstrumented benchmark.

36

FlashFreeze META ’19, October 20, 2019, Athens, Greece

Table 1. A comparison of JavaScript object graph serialization techniques; static overhead is measured by Octane scores.
Technique JSON YAML Oh et al. [22] Kwon and Moon [19] Imagen [20] ThingsMigrate [10] FSM [18] FlashFreeze

Graphs ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Functions ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Nested functions ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Static overhead None None None None High High Low Low
No VM changes ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

No memory leaks ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Precise dependencies N/A N/A ✗ ✗ ✗ ✗ ✗ ✓

Safe for space ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

No runtime library ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

No scope tree ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

bo
x2
d.j
s

co
de
-lo
ad
.js

cry
pto
.js

de
lta
blu
e.j
s

ear
ley
-bo
ye
r.js

gb
em
u-p
art
1.j
s

gb
em
u-p
art
2.j
s

ma
nd
ree
l.js

na
vie
r-s
tok
es.
js

pd
fjs
.js

ray
tra
ce.
js

reg
ex
p.j
s

ric
ha
rds
.js

spl
ay.
js

typ
esc
rip
t-c
om
pil
er.
js

typ
esc
rip
t-i
np
ut.
js

typ
esc
rip
t.js

zli
b-d
ata
.js

zli
b.j
s0

1

2

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.
07

1.
01 1.
11

1.
13

1.
10 1.
17

1.
01 1.
07 1.
23

1.
03

1.
07

1.
03 1.
15 1.
19

1.
06

1.
00 1.
21

1.
00 1.

27

1.
16

0.
96 1.
01

1.
01

0.
94 1.
01

0.
98 1.
03 1.

34

1.
00 1.

22

0.
99 1.
05

1.
00 1.
07

0.
98

1.
00

1.
70

1.
00

1.
89 1.
95

1.
44 1.
48

1.
34

1.
29

1.
99

1.
58

1.
15

1.
91

1.
78

1.
40

1.
00

2.
60

0.
98

1.
43

Fi
le
si
ze

/b
as
el
in
e

Original FlashFreeze FSM ThingsMigrate
Figure 1. Normalized Octane benchmark file sizes. Lower scores are better. Missing bars indicate an error or omission.

FSM is awork in progress. Its construction currently causes
memory leaks: scope descriptions are stored in a table, keep-
ing the descriptions alive even after the scopes themselves
become dead. Consequently, scope descriptions and any ob-
jects they refer to cannot be garbage-collected.

As with ThingsMigrate, FSM-instrumented code calls into
a separate JavaScript runtime library to construct lexical
scope descriptions. This introduces a run-time dependency
on that library.

4.3 Comparison

Table 1 summarizes the characteristics of the various ap-
proaches discussed in this paper, including FlashFreeze’s.

We classify ThingsMigrate as high-overhead based on the
measurements we will describe in section 5. We also classify
Imagen as a high-overhead technique as its construction is an
earlier, less optimized version of ThingsMigrate’s [10, 17, 20].

The “precise dependencies” and “safe for space” rows refer
to the eponymous properties from subsection 3.5. A cross
mark in the “no runtime library” row specifies if instrument-
ing a file makes it dependent on a separate runtime library.
A check mark means the opposite. “No scope tree” means

that the tool’s serialization and deserialization algorithms
give no special consideration to trees of scopes.

5 Evaluation

We now use the Octane JavaScript benchmark suite [12]
to evaluate FlashFreeze’s instrumentation construction. We
split each benchmark into four versions: an unmodified
version, an FSM-instrumented version, a ThingsMigrate-
instrumented version and a FlashFreeze-instrumented ver-
sion. We then measure three quantities for each benchmark
variant: (1) whether the benchmark throws an error, (2) source
code file sizes and (3) the benchmark’s Octane score.
Benchmark errors allow us to assess an instrumentation

technique’s feature-completeness. File sizes serve as a coarse
measure of source code storage and transmission costs. Oc-
tane scores measure throughput and latency.

Benchmarks were run using NodeJS v10.15.2 installed via
the nodejs APT package [26] on an Ubuntu 19.04 machine
sporting an Intel® Core™ i7-6700K CPU. We used Things-
Migrate’s latest version: v2.0.0. FSM-instrumented Octane
benchmarks were provided to us by FSM’s author.

37

META ’19, October 20, 2019, Athens, Greece Jonathan Van der Cruysse, Lode Hoste, and Wolfgang Van Raemdonck

Bo
x2
D

Co
de
Lo
ad

Cr
yp
to

De
lta
Blu
e

Ea
rle
yB
oy
er

Ga
me
bo
y

Ma
nd
ree
l

Ma
nd
ree
lLa
ten
cy

Na
vie
rSt
ok
es

Pd
fJS

Ra
yT
rac
e

Re
gE
xp

Ric
ha
rds Sp

lay

Sp
lay
La
ten
cy

Ty
pe
scr
ipt zli

b0

0.5

1
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
01

0.
99 1.
01 1.
05

0.
91 1.

01

0.
85

0.
83

1.
00 1.
05

0.
99

0.
94 0.
99

1.
00 1.
03

0.
83

1.
00

0.
86

1.
00

1.
00 1.
06

1.
00

1.
02

0.
99 1.
02

1.
00

0.
99

0.
85

1.
00

1.
01

0.
99

0.
02

0.
93

0.
09

0.
00 0.
02 0.
05

0.
01 0.
09

0.
84

0.
01

0.
01 0.
08 0.

19

1.
00

Sc
or
e
/b

as
el
in
e

Original FlashFreeze FSM ThingsMigrate
Figure 2. Normalized Octane benchmark scores. Higher scores are better. Missing bars indicate an error or omission.

5.1 Feature-Completeness

Octane represents a 12.71MiB body of JavaScript programs,
ranging from the asm.js [14] Mandreel benchmark to a PDF
reader [21] and a TypeScript compiler. These benchmarks
have complex behavior. For instance, the TypeScript bench-
mark makes the eponymous compiler compile itself [12].

FlashFreeze correctly instruments all Octane benchmarks.
ThingsMigrate’s instrumentation breaks the semantics of
RegExp and TypeScript; it also throws an error when made
to instrument PdfJS. The FSM-instrumented benchmarks we
were provided do not include PdfJS, TypeScript and zlib.

5.2 Benchmark File Sizes

Figure 1 shows the static overhead of instrumentation in
terms of file size relative to the uninstrumented benchmarks’
sizes. FlashFreeze’s overhead is always modest: benchmark
file size growth stays in the 0% to 27% range. FSM’s file size
growths are in a similar range from 0% to 33%. ThingsMi-
grate’s file size growth peaks at 160%. FlashFreeze, FSM and
ThingsMigrate’s mean file size growths are 10%, 4% and 55%.

5.3 Octane Scores

Figure 2 summarizes Octane scores assigned to each bench-
mark version. The numbers on top of the bars indicate the
Octane score assigned to a benchmark, normalized to the
uninstrumented equivalent’s score. Both FlashFreeze and
FSM outperform ThingsMigrate in terms of Octane scores.
An Octane benchmark instrumented by ThingsMigrate

loses on average 76% of its Octane score. FlashFreeze’s in-
strumentation logic results in a mean score loss of only 3%.
FSM has an even lower loss of 1%.
On some benchmarks, the instrumented benchmarks at-

tain higher scores than their uninstrumented counterparts.
This effect is due to measurement noise. FlashFreeze’s poor

performance on Mandreel stems from Mandreel being a low-
level asm.js program whose often-accessed global heap
variable is assignment converted. FSM performs well on
Mandreel because the benchmark overwhelmingly consists
of functions that capture only globals—such functions are
not modified by FSM. Box2D and RegExp contain mostly
functions that capture locals, which FSM does instrument.
FlashFreeze incurs lower overheads on these benchmarks.

6 Conclusion

We introduced FlashFreeze, a lightweight instrumentation
construction based on lazy capture lists. FlashFreeze is a
general-purpose tool that injects no runtime dependencies
into instrumented files. This property allowed us to easily
use FlashFreeze for a distributed computing application.
FlashFreeze’s capture lists replace the complicated no-

tion of lexical scopes and shared captured variables in other
(de)serializers, allowing for simple (de)serialization logic. Ad-
ditionally, capture lists preserve the safe for space property
and provide a precise description of a function’s dependen-
cies, allowing serializers to serialize a single function without
serializing all global program state in the process.
Experimental results show that FlashFreeze achieves a

mean file size growth of 10% and a mean Octane benchmark
score reduction of 3%. Those metrics are 55% and 76% for
the state-of-the-art ThingsMigrate tool; 4% and 1% for the
work-in-progress FSM technique. Of these three techniques,
only FlashFreeze has been shown to instrument the entire
Octane benchmark suite in a semantics-preserving way.

References

[1] Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul
Hudak, and James Philbin. 1986. ORBIT: An Optimizing Compiler for
Scheme. In Proceedings of the 1986 SIGPLAN Symposium on Compiler
Construction (SIGPLAN ’86). 219–233.

38

FlashFreeze META ’19, October 20, 2019, Athens, Greece

[2] Apple Inc. 2019. WebKit: a fast, open source web browser engine.
https://webkit.org/ Accessed on March 28, 2019.

[3] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. 2009. YAML Ain’t
Markup Language (YAML™) version 1.2. https://yaml.org/spec/cvs/
spec.pdf Accessed on May 19, 2019.

[4] John K. Bennett. 1987. The Design and Implementation of Distributed
Smalltalk. In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications (OOPSLA ’87). 318–330.

[5] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understand-
ing TypeScript. In European Conference on Object-Oriented Program-
ming. Springer, 257–281.

[6] Akmal B Chaudhri. 2017. Apache Ignite Tip: Peer Class Loading De-
ployment Magic. https://www.gridgain.com/resources/blog/apacher-
ignitetm-tip-peer-class-loading-deployment-magic Accessed on May
18, 2019.

[7] Douglas Crockford. 2018. JSON in JavaScript. https://github.com/
douglascrockford/JSON-js Accessed on May 13, 2019.

[8] Martín Dias, Mariano Martinez Peck, Stéphane Ducasse, and Gabriela
Arévalo. 2014. Fuel: A fast general purpose object graph serializer.
Software: Practice and Experience 44, 4 (2014), 433–453.

[9] ECMA International. 2015. ECMAScript 2015 Language Specifica-
tion. https://www.ecma-international.org/ecma-262/6.0/index.html
Accessed on May 17, 2019.

[10] Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin
Rezaiean-Asel, and Karthik Pattabiraman. 2018. ThingsMigrate:
Platform-independent migration of stateful JavaScript IoT applica-
tions. In 32nd European Conference on Object-Oriented Programming
(ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[11] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015.
DLint: dynamically checking bad coding practices in JavaScript. In
Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ACM, 94–105.

[12] Google Developers. 2017. Octane: the JavaScript benchmark suite for
the modern web. https://developers.google.com/octane/ Accessed on
March 28, 2019.

[13] Google Developers. 2019. V8 JavaScript engine. https://v8.dev/
Accessed on March 28, 2019.

[14] David Herman, Luke Wagner, and Alon Zakai. 2014. asm.js: Working
Draft. http://asmjs.org/spec/latest/ Accessed on May 17, 2019.

[15] ISO. 2017. ISO/IEC 14882:2017 Information technology — Programming
languages — C++ (fifth ed.). International Organization for Standardiza-
tion, Geneva, Switzerland. 1605 pages. https://www.iso.org/standard/
68564.html

[16] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the cloud: Distributed computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Computing. ACM,
445–451.

[17] Kumseok Jung, Julien Gascon-Samson, Aarti Kashyap, Xuejie Tang,
Karthik Pattabiraman, and marusshi. 2019. ThingsJS. https://github.
com/DependableSystemsLab/ThingsJS Accessed on May 20, 2019.

[18] Jae-Yun Kim, Hyeon-Jae Lee, and Soo-Mook Moon. 2018. Work-in-
Progress: Fast Snapshot Migration Using Static Code Instrumentation.
In 2018 International Conference on Embedded Software (EMSOFT). IEEE,
1–2.

[19] Jin-woo Kwon and Soo-Mook Moon. 2017. Web application migration
with closure reconstruction. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Con-
ferences Steering Committee, 133–142.

[20] James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. 2013. Imagen:
runtime migration of browser sessions for JavaScript web applications.
In Proceedings of the 22nd international conference on World Wide Web.
ACM, 815–826.

[21] Mozilla and individual contributors. 2016. PDF.js: A general-purpose,
web standards-based platform for parsing and rendering PDFs. https:
//mozilla.github.io/pdf.js/ Accessed on May 17, 2019.

[22] JinSeok Oh, Jin-woo Kwon, Hyukwoo Park, and Soo-Mook Moon.
2015. Migration of web applications with seamless execution. In ACM
SIGPLAN Notices, Vol. 50. ACM, 173–185.

[23] Narayan Prusty. 2015. Learning ECMAScript 6. Packt Publishing Ltd.
[24] Axel Rauschmayer. 2011. JavaScript’s with statement and why it’s

deprecated. https://2ality.com/2011/06/with-statement.html Accessed
on August 30, 2019.

[25] Zhong Shao and Andrew W. Appel. 2000. Efficient and Safe-for-space
Closure Conversion. ACM Transactions on Programming Languages
and Systems (TOPLAS) 22, 1 (Jan. 2000), 129–161.

[26] Ubuntu Developers. 2019. Package nodejs 10.15.2. https://packages.
ubuntu.com/disco/nodejs Accessed on August 31, 2019.

[27] Wolfgang Van Raemdonck, Tom Van Cutsem, Kyumars Sheykh Es-
maili, Mauricio Cortes, Philippe Dobbelaere, Lode Hoste, Eline Philips,
Marc Roelands, and Lieven Trappeniers. 2017. Building connected car
applications on top of the world-wide streams platform. In Proceedings
of the 11th ACM international conference on distributed and event-based
systems. ACM, 315–318.

[28] Kris Zyp. 2017. How to write a TypeScript transform (plu-
gin). https://dev.doctorevidence.com/how-to-write-a-typescript-
transform-plugin-fc5308fdd943 Accessed on March 29, 2019.

39

https://webkit.org/
https://yaml.org/spec/cvs/spec.pdf
https://yaml.org/spec/cvs/spec.pdf
https://www.gridgain.com/resources/blog/apacher-ignitetm-tip-peer-class-loading-deployment-magic
https://www.gridgain.com/resources/blog/apacher-ignitetm-tip-peer-class-loading-deployment-magic
https://github.com/douglascrockford/JSON-js
https://github.com/douglascrockford/JSON-js
https://www.ecma-international.org/ecma-262/6.0/index.html
https://developers.google.com/octane/
https://v8.dev/
http://asmjs.org/spec/latest/
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://github.com/DependableSystemsLab/ThingsJS
https://github.com/DependableSystemsLab/ThingsJS
https://mozilla.github.io/pdf.js/
https://mozilla.github.io/pdf.js/
https://2ality.com/2011/06/with-statement.html
https://packages.ubuntu.com/disco/nodejs
https://packages.ubuntu.com/disco/nodejs
https://dev.doctorevidence.com/how-to-write-a-typescript-transform-plugin-fc5308fdd943
https://dev.doctorevidence.com/how-to-write-a-typescript-transform-plugin-fc5308fdd943

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of JSON

	3 FlashFreeze
	3.1 Capture Lists
	3.2 Serialization
	3.3 Deserialization
	3.4 A Note on Mutated Variables
	3.5 Properties
	3.6 Limitations
	3.7 Implementation

	4 Related work
	4.1 VM Extensions for Function Serialization
	4.2 Source-to-Source Rewriters
	4.3 Comparison

	5 Evaluation
	5.1 Feature-Completeness
	5.2 Benchmark File Sizes
	5.3 Octane Scores

	6 Conclusion
	References

