
languages
Garbage collection abstractions for high-level GPU

Academic year 2018-2019

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Tim Besard
Supervisor: Prof. dr. ir. Bjorn De Sutter

Student number: 01709392
Jonathan Van der Cruysse

Assent to loan

The author gives permission to make this master dissertation available for consulta-
tion and to copy parts of this master dissertation for personal use. In all cases of
other use, the copyright terms have to be respected, in particular with regard to
the obligation to state explicitly the source when quoting results from this master
dissertation.

June 23, 2019

ii

Preface

Before you lies my master’s thesis “Garbage collection abstractions for high-level
GPU languages,” a detailed description of what I believe is the first implementation
of fully transparent garbage collection for Graphics Processing Units (GPUs).

I have had an interest in compilers and managed languages since high school.
This thesis afforded me a wonderful opportunity to cultivate that interest. It also
challenged me to learn more about and work with things that I had no prior
experience with, including GPUs and garbage collection—the main subject matters
here.

I would like to extend my sincere gratitude to my supervisors, Prof. Bjorn De
Sutter and Tim Besard, for guiding me, for introducing me to new and interesting
paradigms and tools, and for their insightful feedback. I also wish to thank the Julia
community in general and Valentin Churavy and Keno Fischer in particular for their
warm reception of my pull requests.

I enjoyed discussing ideas with friends and family. I feel particularly thankful to
my parents, who supported me and offered me sage advice. Finally, I would like to
thank you, dear reader, for taking the time to read my master’s thesis. I hope you
enjoy it.

Jonathan Van der Cruysse

June 23, 2019

iii

Garbage collection abstractions for

high-level GPU languages

Master’s dissertation submitted in order to obtain the academic degree

of Master of Science in Computer Science Engineering

Jonathan Van der Cruysse
Supervisors: Prof. dr. ir. Bjorn De Sutter, Tim Besard

Faculty of Engineering and Architecture, Ghent University

Abstract

Scientific computing is evolving in two major directions: (1) increased GPU use to
take advantage of evolving hardware and (2) high-level programming languages
such as Julia that offer both excellent programmer productivity and performance.
Recent research reconciles these two evolutions by compiling high-level languages
to GPU instructions.

Traditionally, GPUs are programmed using dedicated low-level programming
languages, e.g., CUDA and OpenCL. Garbage Collector (GC)-managed object
allocation, a language feature that is crucial to high-level languages, does not have
an equivalent in CUDA and OpenCL’s programming models. Hence, state-of-the-art
high-level language to GPU compilers either refuse to compile object allocations
or implement object allocation by allocating memory and then never freeing it,
perpetually leaking memory until no more objects can be allocated.

We extend the CUDAnative Julia-to-GPU compiler with the first fully transparent
GC for GPU kernels. To build our GC, we introduce lightweight, low-level, platform-
agnostic GC abstractions in the Julia compiler. The abstractions that underpin
our GC are designed to support alternative GC implementations equally well.
Our GC improves on the state of the art by implementing object allocation in
a fully transparent way and without memory leaks. Liberally-allocating GPU
kernels equipped with our GC obtain a mean speedup of 2× over trivial memory
management based on CUDA malloc, the preferred approach in the state of the art.

Keywords: GPU, Julia, Compilers, Garbage Collection

iv

Garbage collection abstractions for high-level GPU languages

Jonathan Van der Cruysse

Supervisors: Bjorn De Sutter, Tim Besard

Abstract—Recent research reconciles high-level languages
with Graphics Processing Unit (GPU) programming by com-
piling the former to instructions for the latter.

Traditionally, GPUs are programmed using dedicated
low-level programming languages, e.g., CUDA and OpenCL.
Garbage Collector (GC)-managed object allocation, a language
feature crucial to high-level languages, does not have an equiv-
alent in CUDA and OpenCL’s programming models. Hence,
state-of-the-art high-level language to GPU compilers either
refuse to compile object allocations or implement object allo-
cation by allocating memory and then never freeing it, perpet-
ually leaking memory until no more objects can be allocated.

We extend the CUDAnative Julia-to-GPU compiler with
the first fully transparent GC for GPU kernels. To build our
GC, we introduce lightweight, low-level, platform-agnostic
GC abstractions in the Julia compiler. These abstractions are
designed to support alternative GC implementations equally
well. Our GC improves on the state of the art by implement-
ing object allocation in a fully transparent way and without
memory leaks. Liberally-allocating GPU kernels equipped
with our GC obtain a mean speedup of 2× over trivial memory
management based on CUDA malloc, the preferred approach
in the state of the art.

Keywords—GPU, Julia, Compilers, Garbage Collection

I. Introduction

As the field of high-performance computing evolves, two
salient trends are emerging.

First and foremost: Scientific computing applications
nowadays typically rely on GPUs rather than Central Pro-
cessing Units (CPUs) as carefully controlled use of the
former permits order-of-magnitude speedups compared
to typical use of the latter. For this reason, GPU computing
has become mainstream in a wide range of scientific appli-
cations that includes weather forecasting [12], geospatial
indexing [32], chemistry [31], medicine [23] and machine
learning [1].

A second trend is the appearance of productive, high-
level scientific computing languages that match the per-
formance of low-level programming languages such as
Fortran, C and C++. The Julia programming language is
a prominent example: The performance of Julia programs
can match that of equivalent C/C++ programs in spite
of the fact that Julia offers many core language features—
dynamic typing, garbage collection, etc.—that are typically
associated with “slower” programming languages such as
Python, Ruby and Perl [6].

These two trends—increased hardware performance

and increased programmer productivity—are wedded by
projects that compile high-level programming languages
to instructions suitable for execution on the GPU. CUDA-
native is an example of such a project: It compiles Julia
code for NVIDIA GPUs [4].

Because of the unique characteristics of GPUs and a
lack of mature infrastructure in GPU programming en-
vironments, projects that compile high-level languages
for GPUs often restrict the set of supported language fea-
tures. In CUDAnative’s case, Julia language constructs
that map well to the low-level CUDA programming model
for NVIDIA GPUs are supported, but others are not. Con-
sequently, CUDAnative’s GPU kernels, that is, GPU pro-
grams, are written in a low-level dialect of Julia that pre-
cludes idiomatic features such as mutable struct types,
arrays, exception handling, and others.

In addition to reducing the feature set available to
manually written GPU kernels, language features not sup-
ported by CUDAnative also break compositional schemes
that attempt to transparently expose the compute capa-
bilities of GPUs. To name one example, the CuArray
type mimics the functionality of Julia’s normal array type,
but transparently runs array computations on the GPU
to obtain superior performance [4]. CuArray hides the
complexity of GPU programming from its users by auto-
matically synthesizing GPU kernels for common opera-
tions. These automatically synthesized kernels are also
affected by CUDAnative’s restricted set of permissible lan-
guage features. This forces programmers to give special
consideration to how CuArray instances are used, rather
than treating them as fully-featured implementations of
an abstract array type.

Many of the features that are not supported by CUDA-
native have one thing in common: They rely on the pres-
ence of some automatic memory management scheme—
specifically, they expect a GC to be in place.

GPU computing has historically relied on low-level
languages to construct programs suitable for execution on
a GPU. These low-level languages never necessitated the
creation of a GC for GPUs. Consequently, there exist—to
the best of our knowledge—no drop-in GCs for GPU ker-
nels. GC algorithms have been developed for GPUs, but
these experiments required programmer intervention for
interrupting kernels when memory runs out, triggering
an actual collection and restoring the kernel’s state [28].

In this work, we make the following main contribu-
tions:

1. We design GPU-friendly compiler abstractions for

garbage collection and implement these abstractions
in the Julia compiler.

2. Based on these abstractions, we design a transparent
GC for GPUs kernels. We implement our GC in
CUDAnative, targeting Julia code that is compiled
for NVIDIA GPUs.

II. Background

This section briefly describes the state of the art in Julia-to-
GPU compilation, emphasizing topics that are material to
the contributions presented in the next sections.

A. GPU programming

GPU programming can deliver large performance in-
creases over traditional CPU programming. This per-
formance boost can be attributed to the execution model
that underpins GPU programming: CPUs are optimized
for executing sequential instruction streams whereas GPUs
are optimized for executing instructions in a massively
parallel fashion.

CUDAnative, which we will shortly discuss in more
detail, targets NVIDIA GPUs only. Since our contributions
are implemented as changes to Julia and CUDAnative, we
will restrict ourselves to the CUDA programming model
for NVIDIA GPUs.

GPU programming diverges from CPU programming
in a number of ways. The most prominent differences
between the two programming paradigms are related to
parallelism and memory management.

1) Parallelism

Parallelism is a fundamental feature of GPUs that deeply
affects both functional and non-functional aspects of GPU
programs. We introduce the following CUDA terminol-
ogy:

• A kernel is a GPU program. Every launched kernel
consists of a set of threads.

• A thread is a semi-independent unit of execution.
All threads in a launched kernel execute the same
program. The control flow of threads can diverge
based on the data they process.

• Threads are grouped by the hardware into warps:
fixed-size collections of threads.

• Threads are grouped by programmers into blocks.
The threads in a block can synchronize and commu-
nicate efficiently through shared memory [26].

NVIDIA GPUs implement Single Instruction, Multiple
Threads (SIMT), an idiosyncratic version of the popu-
lar Single Program, Multiple Data (SPMD) programming
model [11, 18]. Threads in different warps run in paral-
lel and independently of each other, like CPU threads.
Inside of a warp, threads exhibit a peculiar form of paral-
lelism that characterizes SIMT: Instructions from threads
in the same warp are executed in lockstep and in parallel.

That is, at every step, threads in a warp execute the same
instruction on different data in parallel. When control
flow in these threads diverges, the divergent control-flow
paths are executed sequentially until control flow recon-
verges. This phenomenon, where different threads in the
same warp execute different control-flow paths, is known
as thread divergence [19, 27]. Thread divergence impacts
functional and non-functional aspects of GPU kernels.
On the non-functional side, thread divergence reduces
performance. On the functional side, thread divergence
can cause thread starvation: Until the currently running
threads complete, the other threads will not make any
progress at all [9].

2) GPU memory

NVIDIA GPUs feature a complex partitioning of on-chip
memory that includes global, constant, texture, shared,
and local memory spaces. Each of these memory spaces
are optimized for different use cases and differ in both
their functional and non-functional properties [19, 27]:

• Global memory is read-write global memory.

• Constant memory is read-only global memory.

• Texture memory is read-only global memory that is
optimized for 2D access patterns.

• Shared memory is read-write per-block memory.

• Local memory is read-write per-thread memory.

In addition to these various kinds of on-chip mem-
ory, GPU kernels may also access host memory directly,
provided that it is page-locked. Page-locked memory, also
known as pinned memory, is guaranteed by the operating
system to always be present in random-access memory—it
will never be paged out to disk.

Finally, unified memory is similar to pinned memory
in that it is accessible to both CPUs and GPUs. Unlike
pinned memory, which is essentially CPU memory that is
shared with the GPU, unified memory pages automatically
migrate to the device that is currently using them, which
can be either a CPU or a GPU [13].

B. The Julia programming language

The Julia programming language [5, 10] is a dynamic pro-
gramming language in a similar vein to Python, Matlab
and R. Julia sets itself apart from these other dynamic
languages in being designed with speed in mind: Ju-
lia is Just In Time (JIT) compiled to native code by the
industrial-strength LLVM compiler framework [15].

C. CUDAnative

CUDAnative is a Julia package that compiles Julia code to
Parallel Thread Execution (PTX) instructions suitable for
execution on NVIDIA GPUs [4,20]. Kernels are encoded as
regular Julia functions, which are transparently compiled
to GPU instructions by CUDAnative.

CUDAnative is designed to take advantage of exist-
ing Julia compiler infrastructure to compile Julia code for
NVIDIA GPUs. Code that is compiled by CUDAnative
passes through approximately the same machinery that
is used for compiling regular Julia code. CUDAnative
intercepts LLVM Intermediate Representation (IR) gen-
erated by the Julia compiler just before that IR becomes
target-specific and sends it to LLVM’s PTX back-end in-
stead of sending it to the code generator for the CPU,
as the unmodified, CPU-targeting Julia compiler would
have done [25]. This mechanism allows CUDAnative to
compile low-level Julia code for GPUs.

The Julia compiler relies on a runtime library to im-
plement sophisticated language features, such as garbage
collection, exception handling, and dynamic multiple dis-
patch. Julia’s runtime library is CPU-specific and hence
CUDAnative cannot reuse it. Whenever the Julia compiler
generates a call to the runtime library, CUDAnative must
cope with that call somehow. Broadly speaking, CUDA-
native has two mechanisms for handling calls to the Julia
runtime library.

1. If the runtime library function can reasonably be
re-implemented for GPUs, then CUDAnative can
supply its own version of the runtime library func-
tion and link it with kernels.

2. If the runtime library function’s semantics or signa-
ture rule out a GPU implementation, then CUDA-
native throws a compile-time error. In effect, this
disables the use of a language feature for all CUDA-
native kernels.

GC-managed object allocation straddles these two cate-
gories. Prior to this work, object allocation in CUDAnative
was implemented as a GPU runtime library function that
used a trivial memory management scheme, calling the
CUDA malloc function to allocate memory but never re-
turning said memory when the object became unnecessary,
effectively creating a memory leak. Furthermore, memory
leaked by a kernel was not reclaimed when the kernel
terminated, meaning that memory eventually ran out if a
program kept on launching kernels, even if those kernels
used memory sparingly.

Hence, the previous proof-of-concept implementation
of object allocation only partially satisfied the semantics
of the Julia runtime function it implemented: It dutifully
allocated new memory, but failed to recycle that memory
when no longer in use.

III. Garbage collection abstractions for Julia

The first main contribution of this work is the addition of
a new layer of abstraction to the Julia compiler. Our ab-
straction allows for easy implementation of generational,
non-moving, precise GCs [29] without overly constraining
that interface between the application and the GC.

A. Requirements

As a novel contribution, we introduce two metrics for
evaluating the appropriateness of abstractions in general
and apply them to the problem at hand:

1. Robustness: The degree to which an abstraction can
accommodate divergent implementations of some
feature.

2. Thinness: The amount of engineering required to
lower the abstraction to something concrete.

One can easily come up with an abstraction that is
maximally robust and minimally thin: The source code
being compiled, for example. Similarly, a maximally thin
and minimally robust abstraction would be a compiler’s
output. In practice, what we want is an abstraction that is
sufficiently robust to accommodate the implementations
we have in mind while being as thin as possible given this
constraint.

B. Preexisting abstractions

The Julia compiler has two relevant preexisting abstrac-
tions for garbage collection. The primary difference be-
tween these abstractions is how they represent the root set,
that is, the set of all object references in global variables
and active function frames. Any GC needs to be able to
inspect or approximate said root set to know which objects
are alive and which ones are dead.

The first abstraction we will discuss is fully lowered
LLVM IR: The final form of the LLVM IR produced by
Julia, just before that IR is sent to the CPU-specific code
generator. At this level of abstraction, the root set is rep-
resented by a linked list of stack-allocated arrays of root
pointers. Each such array of root pointers is called a GC
frame. The fact that GC frames are allocated on the stack
makes this abstraction insufficiently robust for our GC,
which allocates objects on the GPU and collects them on
the CPU. The GPU can access its own stack memory, but
the CPU cannot access GPU stack memory. Because the
CPU is responsible for collections, both the CPU and GPU
must be able to access the root set, which is not the case
for fully lowered LLVM IR.

By taking a step backward in the Julia compiler’s
pipeline, we arrive at an address space–based abstraction that
uses LLVM pointer address spaces to identify pointers that
belong in the root set [17]. The address space–based ab-
straction is sufficiently robust for our GC but it is not thin
enough: Lowering the abstraction is a complex process.
Specifically, it is lowered in one big step to fully lowered
LLVM IR by a transform called GC frame lowering. If we
were to use this abstraction to implement our GPU GC,
then we would have to re-implement GC frame lowering,
plus some minor modifications.

1In a compiler, an intrinsic (function) is a function whose meaning is intimately understood by the compiler. Additionally, intrinsic functions are
declared but never defined: They are lowered to something concrete before the end of the compiler’s pipeline. Consequently, the native code
generated by the compiler never calls intrinsics, unlike normal functions.

C. Low-level GC intrinsics

Because the address space–based abstraction is not thin
enough and fully lowered LLVM IR is not robust enough,
we implement an intermediate abstraction based on low-
level intrinsics.1 We split up the GC frame lowering
transform into two passes: A large, GC-agnostic pass that
takes the address space–based abstraction and translates it
to our new abstraction and a small, GC-specific pass that
lowers our new abstraction to fully lowered LLVM IR. To
implement a custom GC, one only needs to implement a
different GC-specific pass.

At the heart of our abstraction are four intrinsics that
capture the essence of root set management:

1. julia.new_gc_frame(n) allocates a new GC frame
that can accommodate at least n GC roots. It returns
a pointer to that frame.

2. julia.push_gc_frame(gcframe, n) takes a GC
frame and registers it with the GC. The size of
that GC frame is also provided for the GC-specific
lowering’s convenience; the lowering can effortlessly
discard it if it is not needed.

3. julia.get_gc_frame_slot(gcframe, i) accepts
a pointer to a GC frame and produces a pointer to
the i th root pointer in that GC frame.

4. julia.pop_gc_frame(gcframe) unregisters a GC
frame, removing its contribution to the root set.

These four intrinsics have concrete semantics. Hence, they
can be lowered formulaically to a root set management
implementation. At the same time, they give us enough
wiggle-room to support a number of different root set
management data structures.

IV. A garbage collector for CUDAnative

We now discuss the implementation of a semi-precise,
mark-and-sweep GC for CUDAnative kernels based on
the abstractions from the previous section.

A. High-level design

CUDAnative targets systems that include both GPUs and
GPUs. We can use either device to allocate memory and
collect garbage, provided that we have a reliable means of
communication between these two devices during kernel
executions.

Our GC allocates memory on the GPU and collects
garbage on the CPU. We believe that a CPU is the most
suitable device for this task: CPUs are known to excel at
workloads that feature non-streaming memory accesses
and synchronized access to resources, typical properties
of mark and sweep GCs [16, 21].

The GC uses free lists to allocate memory [30]. To
reduce free list contention, the GC groups threads and
assigns a local free list to every group. These local free
lists are intended for quickly allocating small objects. Our
GC also has a global free list, shared by all threads, for

allocating large objects. Users can control the number of
local free lists as well as the initial amount of memory
managed by the local and global free lists.

When a thread’s local and global free lists run out of
memory, the GPU triggers an interrupt that makes the
CPU run a simple mark-and-sweep algorithm. Said algo-
rithm finds garbage objects and returns them to the free
lists from which they originate. If the collector finds a free
list to be memory-starved even after a collection, then it
will allocate additional memory and append it to the free
list in question.

B. Interrupts

To give GPU kernels a reliable channel for requesting ac-
tions from the CPU, we implement GPU interrupts. The
semantics of an interrupt are as follows:

• A GPU thread requests an interrupt and waits for the
current interrupt to complete. The current interrupt
may be the interrupt requested by the GPU thread or
may be an already-pending interrupt requested by
some other thread. When the interrupt completes,
the GPU thread is made aware of whether it started
a new interrupt or merely waited for an existing
interrupt.

• When the GPU requests a new interrupt, the CPU
takes note of this fact and runs an interrupt handler,
that is, a function that is assigned to the kernel at
kernel launch time.

Additionally, GPU threads can also wait for the current
interrupt—if any—to complete without requesting a new
interrupt themselves.

Our GC uses this flexible interrupt mechanism to imple-
ment collections: When a GPU thread runs out of memory,
it requests a new interrupt or waits for the current inter-
rupt to complete. The interrupt handler corresponds to
the GC’s collection algorithm.

C. Safepoints

Many garbage collection algorithms require that object
references, including the root set, do not change during
collections. The mark-and-sweep algorithm we use to
implement collections is no exception. GPU kernels are
massively parallel, meaning that object references may well
change during collections unless we take action, breaking
the assumption made by the collection algorithm.

Safepoints are a common approach to work around this
issue [2]. A safepoint is a point in the instruction stream of
a program at which a collection may safely occur. By paus-
ing threads at safepoints during a collection, we can ensure
that object references do not change during said collection,
vindicating the collection algorithm’s assumption.

The Julia compiler already has a notion of safepoints.
We inject an additional pass into the Julia compilation
pipeline that places a safepoint polling function at every safe-
point. Such a polling function simply tests if a collection
interrupt is pending and stops the current thread if it is. It

also sets a flag, telling the collector that the current warp
is ready for collection.

The collector waits for all warps to enter a safepoint
before performing a collection, ensuring that the entire
kernel is paused during the collection. After the collection,
all paused warps resume execution.

D. Root set management

Since the GC uses the GPU for allocation and the CPU for
collection, we need GC-managed memory and auxiliary
data structures to be accessible to both the GPU and that
CPU. For this reason, we use pinned host memory for all
memory managed by the GC.

As previously hinted, this implies that the root set
management scheme for Julia’s CPU GC does not work
for our GPU GC: The CPU GC stores roots in a linked
list of stack-allocated GC frames. GPU stack memory is
accessible to the GPU only; we instead want to use pinned
memory for the root set, which is accessible to both the
CPU and the GPU.

The GPU GC allocates a fixed-size buffer of pinned
memory to every thread at kernel launch time. We imple-
ment the GC abstractions we introduced in the previous
section to use that buffer as a stack of GC roots. When a
collection is triggered, the GC scans the root buffers, allow-
ing it to precisely identify the GC roots. Object references
stored in other objects are approximated conservatively by
inspecting all pointer-sized chunks of data in every object.

V. Evaluation

In this section, we evaluate the GC’s performance both in
a functional and a non-functional sense.

A. Functional aspects

First and foremost, we evaluate the GC’s functional as-
pects, which translates into the following question: “Which
high-level language features does the GC enable?” We
distinguish between two different classes of features:

• Directly enabled features: these features require
nothing more than a working implementations of
the GC-related functions of the Julia runtime library.

Most prominently, this category includes object allo-
cation, specifically mutable and/or recursive struct
allocation. Mutable and/or recursive struct types
are a central part of Julia’s type system. In Julia,
they represent the only “right way” to implement
a number of standard data structures. Examples
include linked lists, binary trees, and compiler IRs.

• Indirectly enabled features: these features depend
on a GC implementation plus some additional, dedi-
cated runtime library functions.

We show that our GC is also suitable for this cate-
gory of features by implementing thirteen crucial
low-level array-related functions in the GPU version
of the Julia runtime library. These functions form the
backbone of Julia’s low-level array interface. They

enable a large amount of array-related features, in-
cluding (1) array creation, (2) reading and writing
array elements, (3) querying an array’s dimensions,
(4) inserting elements into arrays, (5) deleting el-
ements from arrays, (6) increasing the capacity of
arrays, (7) wrapping unmanaged buffers in arrays,
(8) array comprehensions [14], and (9) high-level ar-
ray functions such as fill , fill! and similar .

We verify the veracity of all of these claims by con-
structing a set of benchmark programs that implement
various algorithm in a idiomatic ways, that is, using the
features described above.

B. Non-functional aspects

For our GC to be useful in practice, we also need its non-
functional aspects to be up to scratch. We will verify
that this is the case based on three performance-related
questions:

1. What is the GC’s variable overhead, that is, how well
does the GC perform in terms of run time compared
to trivial memory management schemes when run
on a set of benchmarks that rely strongly on dynamic
memory allocation?

2. How does the initial GC heap size affect the GC’s
performance?

3. What is the GC’s constant overhead, that is, how well
does the GC perform in terms of run time compared
to trivial memory management when run on a set
of benchmarks that do not rely on dynamic memory
allocation at all?

1) Variable overhead

To determine the GC’s variable overhead, we re-use the
functional benchmarks, but this time measure their wall
clock time. The functional benchmarks are designed to
model idiomatic Julia code applied to GPUs. They al-
locate objects quite liberally and are hence suitable for
ascertaining the variable overhead of the GC.

Figure 1 shows the slowdown of benchmarks per con-
figuration, normalized to CUDA malloc and averaged out
over the benchmark suite. Specifically, every benchmark,
configuration pair was run for 90 s by the BenchmarkTools
package [8]. Then, the median of these measurements was
taken, as per the BenchmarkTools manual’s recommen-
dations [24]. Each median was normalized with regard
to the median for the CUDA malloc configuration of the
applicable benchmark. The bars in Figure 1 represent the
means of those medians, grouped by configuration.

The “CUDA malloc” configuration uses its epony-
mous function to allocate memory. The “Unoptimized
GC” configuration uses the GC described in this work but
assigns it a single global free list and no local free lists.
The “Optimized GC” configuration uses eight local free
lists. We also implemented a bump allocator [30]—a lower
bound on run times. Every configuration has 60 MiB heap,
except for CUDA malloc, which has a 64 MiB heap for
practical reasons that do not affect our results.

m
ea

n0

0.5

1
1.000

1.153

0.504

0.072R
un

ti
m

e
/

ba
se

lin
e

CUDA malloc Unoptimized GC
Optimized GC Bump allocator

Figure 1: Variable overhead of unoptimized, optimized
GCs relative to trivial memory management schemes.
Lower scores are better.

2) Initial heap size

To determine the impact of the initial GC heap size on
performance, we re-run the functional benchmarks, but
this time with GC heap sizes that vary from 10 MiB to
60 MiB. The latter is more than enough memory for all
benchmarks in our benchmark suite, meaning that no col-
lections should take place. The former is well below that
mark, allowing us to quantify the overhead of collections.

Figure 2 plots how the mean normalized run times of
benchmarks evolve with initial GC heap sizes. The figure
shows that the initial heap size barely affects performance,
with larger initial heaps performing slightly worse than
smaller ones. We believe that the initial heap size’s limited
impact on performance is due to the fact that allocation
times dominate, as can be inferred from Figure 1. Interrupt
and collection overheads appear to be mild in comparison,
as evidenced by Figure 2. Smaller initial heap sizes re-
duce the amount of up-front effort required for allocating
and initializing potentially unused sections of the heap,
explaining why smaller heaps appear to perform slightly
better than their larger counterparts.

10 20 30 40 50 60

1

2

3

Initial GC heap size (MiB)

R
un

ti
m

e
/

ba
se

lin
e

Unoptimized GC Optimized GC

Figure 2: Normalized run times of benchmarks with un-
optimized, optimized GCs at various initial heap sizes.
Lower scores are better.

3) Constant overhead

We determine the constant overhead of the GC by per-
forming the same experiment as for variable overhead,
but with benchmarks from a Julia port of the Rodinia
benchmark suite [3, 7]. Rodinia is designed to represent
typical scientific computing loads for GPUs. None of
the Rodinia benchmarks allocate memory dynamically,
which makes them suitable candidates for ascertaining the
constant overhead of using a GPU GC.

Figure 3 depicts the result of this experiment: kernel
run times relative to CUDA malloc are plotted for each
Rodinia benchmark. The x axis identifies CUDA malloc–
configured kernel run times. Short-lived kernels have
the highest relative constant overhead; relative constant
overhead for long-lived kernels is negligible.

1,000 10,000 100,000 1,000,000

2

4

6

Baseline (µs)

R
un

ti
m

e
/

ba
se

lin
e CUDA malloc

Unoptimized GC
Optimized GC
Bump allocator

Figure 3: Constant overhead of unoptimized, optimized
GCs relative to a trivial memory management scheme
scheme built on CUDA malloc, by benchmark duration.
Lower scores are better.

VI. Conclusion

We implemented the first fully transparent GC for GPU
kernels. Our GC is implemented as a modified version of
the CUDAnative package, which compiles Julia code to
NVIDIA GPU kernels.

To implement our GC, we introduced a new low-level
intrinsics-based GC abstraction in the Julia compiler. This
abstraction is sufficiently robust to implement both Julia’s
CPU GC and the GPU GC presented in this work. Despite
its robustness, the abstraction is quite thin: It can be im-
plemented by a formulaic lowering, even for divergent
implementation strategies.

Experiments produce hopeful results regarding the
GPU GC’s functional and non-functional aspects. On the
functional side, the GC directly enables object allocation
and indirectly enables arrays, a crucial data structure in
idiomatic Julia.

In terms of variable overhead, benchmarks are on av-
erage 2× faster when they are configured to use our GC
instead of CUDA malloc, the allocation function that is
used to implement object allocation in unmodified CUDA-
native and the Rootbeer Java-to-CUDA compiler [22]. To
the best of our knowledge, these two projects are the only
high-level language to GPU compilers that implement
fully transparent object allocation.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16) (2016), pp. 265–283.

[2] Attanasio, C. R., Bacon, D. F., Cocchi, A., and Smith,
S. A comparative evaluation of parallel garbage col-
lector implementations. In International Workshop on
Languages and Compilers for Parallel Computing (2001),
Springer, pp. 177–192.

[3] Besard, T., and Foket, C. Benchmark suite for hetero-
geneous computing infrastructures. https://github.
com/JuliaParallel/rodinia. Accessed on May 8,
2019.

[4] Besard, T., Foket, C., and De Sutter, B. Effective
extensible programming: unleashing Julia on GPUs.
IEEE Transactions on Parallel and Distributed Systems
30, 4 (2019), 827–841.

[5] Bezanson, J., Edelman, A., Karpinski, S., and Shah,
V. B. Julia: A fresh approach to numerical computing.
SIAM review 59, 1 (2017), 65–98.

[6] Bezanson, J., Karpinski, S., Shah, V. B., and Edel-
man, A. Julia: A fast dynamic language for technical
computing. arXiv preprint arXiv:1209.5145 (2012).

[7] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer,
J. W., Lee, S.-H., and Skadron, K. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009
IEEE international symposium on workload characteriza-
tion (IISWC) (2009), Ieee, pp. 44–54.

[8] Chen, J., and Revels, J. Robust benchmarking in
noisy environments. arXiv preprint arXiv:1608.04295
(2016).

[9] Durant, L., Giroux, O., Harris, M., and Stam, N.
Inside Volta: The world’s most advanced data center
GPU. NVIDIA Developer Blog, https://devblogs.
nvidia.com/inside-volta (May 2017). Accessed
on May 24, 2019.

[10] Edelman, A. Julia: A fresh approach to parallel
programming. In 2015 IEEE International Parallel and
Distributed Processing Symposium (2015), IEEE, pp. 517–
517.

[11] Fung, W. W., and Aamodt, T. M. Thread block com-
paction for efficient SIMT control flow. In 2011 IEEE
17th International Symposium on High Performance Com-
puter Architecture (2011), IEEE, pp. 25–36.

[12] Govett, M. W., Middlecoff, J., and Henderson, T.
Running the NIM next-generation weather model
on GPUs. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Com-
puting (2010), IEEE Computer Society, pp. 792–796.

[13] Harris, M. Unified Memory for CUDA Beginners.
NVIDIA Developer Blog, https://devblogs.nvidia.
com/unified-memory-cuda-beginners/ (June
2017). Accessed on June 4, 2019.

[14] Introducing Julia contributors. Introducing Julia:
Arrays and tuples. https://en.wikibooks.org/

wiki/Introducing_Julia/Arrays_and_tuples,
February 2019. Accessed on June 11, 2019.

[15] Lattner, C., and Adve, V. LLVM: a compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and
runtime optimization (2004), IEEE Computer Society,
p. 75.

[16] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim,
D., Nguyen, A. D., Satish, N., Smelyanskiy, M., Chen-
nupaty, S., Hammarlund, P., et al. Debunking the
100× GPU vs. CPU myth: an evaluation of through-
put computing on CPU and GPU. ACM SIGARCH
computer architecture news 38, 3 (2010), 451–460.

[17] LLVM project. LLVM language reference manual.
http://llvm.org/docs/LangRef.html, April 2019.
Accessed on May 1, 2019.

[18] Nickolls, J., Buck, I., and Garland, M. Scalable
parallel programming. In 2008 IEEE Hot Chips 20
Symposium (HCS) (2008), IEEE, pp. 40–53.

[19] Nvidia. CUDA C programming guide v10.1. Nvidia
Corporation, March 2019.

[20] Nvidia. Parallel Thread Execution ISA v6.4. Nvidia
Corporation, March 2019.

[21] Owens, J. D., Houston, M., Luebke, D., Green, S.,
Stone, J. E., and Phillips, J. C. GPU computing.
Proceedings of the IEEE 96, 5 (2008).

[22] Pratt-Szeliga, P. C., Fawcett, J. W., andWelch, R. D.
Rootbeer: Seamlessly using GPUs from Java. In
High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th
International Conference on (2012), IEEE, pp. 375–380.

[23] Pratx, G., and Xing, L. GPU computing in medi-
cal physics: a review. Medical physics 38, 5 (2011),
2685–2697.

[24] Revels, J., Arslan, A., Ahrens, P., Adams, L., Herri-
man, J., Goerz, M., Johnson, S. G., andMauro. Bench-
markTools manual. https://github.com/JuliaCI/
BenchmarkTools.jl/blob/master/doc/manual.md,
November 2018. Accessed on June 10, 2019.

[25] Rhodin, H. A PTX code generator for LLVM. Bache-
lor’s thesis, Saarland University, Saarbrücken, Ger-
many, October 2010.

[26] Romero, M., and Urra, R. CUDA Overview.
http://cuda.ce.rit.edu/cuda_overview/cuda_

overview.htm. Accessed on May 27, 2019.

[27] Sanders, J., and Kandrot, E. CUDA by Example:
An Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 2010.

[28] Veldema, R., and Philippsen, M. Iterative data-
parallel mark&sweep on a GPU. In ACM SIGPLAN
Notices (2011), vol. 46, ACM, pp. 1–10.

[29] Wilson, P. R. Uniprocessor garbage collection tech-
niques. In International Workshop on Memory Manage-
ment (1992), Springer, pp. 1–42.

[30] Wilson, P. R., Johnstone, M. S., Neely, M., and Boles,
D. Dynamic storage allocation: A survey and critical

review. In International Workshop on Memory Manage-
ment (1995), Springer, pp. 1–116.

[31] Wu, X., Koslowski, A., and Thiel, W. Semiempir-
ical quantum chemical calculations accelerated on
a hybrid multicore CPU–GPU computing platform.
Journal of chemical theory and computation 8, 7 (2012),
2272–2281.

[32] Zhang, J., You, S., andGruenwald, L. Indexing large-
scale raster geospatial data using massively parallel
GPGPU computing. In Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geographic
Information Systems (2010), ACM, pp. 450–453.

Contents

Acronyms xv

1 Introduction 1

2 Background 3

2.1 General-purpose GPU programming 3

2.1.1 Parallel execution semantics . 3

2.1.2 GPU memory . 6

2.2 The Julia programming language . 6

2.2.1 Compilation pipeline . 7

2.2.2 Garbage collection . 8

2.3 CUDAnative: A Julia-to-GPU compiler 10

2.3.1 Compilation strategy . 10

2.3.2 Workarounds for problematic runtime library functions . . . 13

2.3.3 The case for native language features 15

2.3.4 Proof-of-concept object allocation for CUDAnative kernels . . 19

2.3.5 Goals of this thesis . 21

2.4 Garbage collection . 22

2.4.1 A taxonomy of garbage collectors 23

3 Garbage collection abstractions for Julia 31

3.1 Requirements . 31

3.2 Preexisting abstractions . 32

3.2.1 Methodology . 33

3.2.2 Last abstraction layer: Runtime library calls 34

3.2.3 Penultimate abstraction layer: Address spaces and intrinsics . 39

3.3 Low-level GC intrinsics . 41

3.3.1 Abstraction . 41

3.3.2 Implementation . 44

xiii

4 A garbage collector for CUDAnative 47
4.1 Trivial memory management . 47

4.1.1 GC intrinsic lowering . 48
4.1.2 A bump allocator . 49

4.2 A garbage collector for GPU memory 50
4.2.1 Related work . 50
4.2.2 High-level design . 51
4.2.3 GPU interrupts . 52
4.2.4 Collection . 54
4.2.5 Choice of memory type . 57
4.2.6 Root set management . 58
4.2.7 Allocation . 59

4.3 Limitations . 60
4.3.1 Concurrent kernel launches . 60
4.3.2 Dynamic parallelism . 61

4.4 Conclusion . 62

5 Evaluation 63
5.1 Functional aspects . 63

5.1.1 Directly enabled language features 64
5.1.2 Indirectly enabled language features 65

5.2 Non-functional aspects . 68
5.2.1 Variable overhead . 69
5.2.2 Initial heap sizes . 72
5.2.3 Constant overhead . 73

6 Related work 77
6.1 Garbage collection abstractions . 77
6.2 Allocators for GPU memory . 78
6.3 Managed language implementations for GPUs 78

7 Conclusion 81
7.1 Future work . 81

Bibliography 83

Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
CLR Common Language Runtime
CPU Central Processing Unit
GC Garbage Collector
GHC Glasgow Haskell Compiler
GPU Graphics Processing Unit
IR Intermediate Representation
JIT Just In Time
JVM Java Virtual Machine
LOC Lines of Code
PTX Parallel Thread Execution
SIMT Single Instruction, Multiple Threads
SPMD Single Program, Multiple Data
SSA Static Single Assignment

xv

1 Introduction

As the field of high-performance computing evolves, two salient trends are emerging.

First and foremost: Scientific computing applications nowadays typically rely on
GPUs rather than Central Processing Units (CPUs) as carefully controlled use of
the former permits order-of-magnitude speedups compared to typical use of the
latter. For this reason, GPU computing has become mainstream in a wide range of
scientific applications that includes weather forecasting [38], geospatial indexing [85],
chemistry [84], medicine [63] and machine learning [1].

A second trend is the appearance of productive, high-level scientific computing
languages that match the performance of low-level programming languages such
as Fortran, C and C++. The Julia programming language is a prominent example:
The performance of Julia programs can match that of equivalent C/C++ programs
in spite of the fact that Julia offers many core language features—dynamic typing,
garbage collection, etc.—that are typically associated with “slower” programming
languages such as Python, Ruby and Perl [17].

These two trends—increased hardware performance and increased programmer
productivity—are wedded by projects that compile high-level programming lan-
guages to instructions suitable for execution on the GPU. CUDAnative is an example
of such a project: It compiles Julia code for NVIDIA GPUs [15].

Because of the unique characteristics of GPUs and a lack of mature infrastructure
in GPU programming environments, projects that compile high-level languages for
GPUs often restrict the set of supported language features. In CUDAnative’s case,
Julia language constructs that map well to the low-level CUDA programming model
for NVIDIA GPUs are supported, but others are not. Consequently, CUDAnative’s
GPU kernels, that is, GPU programs, are written in a low-level dialect of Julia
that precludes idiomatic features such as mutable struct types, arrays, exception
handling, and others.

In addition to reducing the feature set available to manually written GPU kernels,
language features not supported by CUDAnative also break compositional schemes
that attempt to transparently expose the compute capabilities of GPUs. To name

1

1 Introduction

one example, the CuArray type mimics the functionality of Julia’s normal array
type, but transparently runs array computations on the GPU to obtain superior
performance [15]. CuArray hides the complexity of GPU programming from its
users by automatically synthesizing GPU kernels for common operations. These
automatically synthesized kernels are also affected by CUDAnative’s restricted
set of permissible language features. This forces programmers to give special
consideration to how CuArray instances are used, rather than treating them as
fully-featured implementations of an abstract array type.

Many of the features that are not supported by CUDAnative have one thing
in common: They rely on the presence of some automatic memory management
scheme—specifically, they expect a GC to be in place.

GPU computing has historically relied on low-level languages to construct pro-
grams suitable for execution on a GPU. These low-level languages never necessitated
the creation of a GC for GPUs. Consequently, there exist—to the best of our
knowledge—no drop-in GCs for GPU kernels. GC algorithms have been developed
for GPUs, but these experiments required programmer intervention for interrupting
kernels when memory runs out, triggering an actual collection and restoring the
kernel’s state [76].

This thesis has two main goals:

1. To design GPU-friendly compiler abstractions for garbage collection and
implement these abstractions in the Julia compiler.

2. To design memory management schemes for GPUs that build on the abstrac-
tions from the previous item. We implement the memory management schemes
in CUDAnative, targeting Julia code that is compiled for NVIDIA GPUs.

We will start off with an overview of the state of the art in compiling Julia for
GPUs as well as a discussion of a number of topics that are relevant to the design of
a GC that works on GPUs.

Next, we outline our core contributions. Our first contribution is a set of changes
to the Julia compiler that allow for the development of custom GC implementations.
Our second and main contribution is a fully-featured mark-and-sweep GC for GPUs.

We then evaluate functional and non-functional aspects of the GPU GC and its
supporting infrastructure. Finally, we discuss select related work and conclude the
thesis.

2

2 Background

This chapter discusses the state of the art in Julia-to-GPU compilation and GPU
garbage collection, with a particular emphasis on topics that are material to the
contributions presented in the remainder of this thesis.

2.1 General-purpose GPU programming

GPUs can deliver large performance increases over traditional CPU programming.
This performance boost can be attributed to the execution model that underpins GPU
programming: CPUs are optimized for executing sequential instruction streams
whereas GPUs are optimized for executing instructions in a massively parallel
fashion.

This section discusses some differences between CPU and GPU programming. As
per our stated goal of targeting Julia code that is compiled for NVIDIA GPUs, we
will restrict ourselves to NVIDIA’s CUDA programming model [57].

2.1.1 Parallel execution semantics

Parallelism is a fundamental feature of GPUs that deeply affects both functional and
non-functional aspects of GPU programs. To manage this parallelism adequately, the
CUDA GPU programming language introduces a complex hierarchy of hardware
and software parallelism. We introduce the following CUDA terminology:

• A kernel is a GPU program. Every launched kernel consists of a set of threads.

• A thread is a semi-independent unit of execution. All threads in a launched
kernel execute the same program. The control flow of threads can diverge
based on the data they process.

• Threads are grouped by the hardware into warps: fixed-size collections of
threads.

3

2 Background

Time

di
ve

rg
e

re
co

nv
er

ge

Figure 2.1: Thread divergence within a warp. Adapted from Durant et al. [28]

Warps and SIMT

NVIDIA GPUs implement Single Instruction, Multiple Threads (SIMT), an idiosyn-
cratic version of the popular Single Program, Multiple Data (SPMD) programming
model [35, 55]. Threads in different warps run in parallel and independently of
each other, like CPU threads. Inside of a warp, threads exhibit a peculiar form of
parallelism that characterizes SIMT: Instructions from threads in the same warp are
executed in lockstep and in parallel. That is, at every step, threads in a warp execute
the same instruction on different data in parallel. When control flow in these threads
diverges, a scenario isomorphic to Figure 2.1 occurs: The divergent control-flow
paths are executed in a sequential fashion until control flow reconverges. This phe-
nomenon, where different threads in the same warp execute different control-flow
paths, is known as thread divergence [57, 68].

Thread divergence impacts both functional and non-functional aspects of GPU
kernels. On the non-functional side, subdividing a warp into groups of threads that
must be processed in sequence reduces parallelism, impacting run time performance.
On the functional side, sequentially processing divergent threads implies that thread
starvation may occur: Until the currently running threads complete, the other
threads will not make any progress at all [28].

Blocks and grids

In addition to the hardware-side partitioning of threads into warps, CUDA also
exposes mechanisms for programmatically partitioning threads into blocks and warps.

A block is a collection of concurrently-executing threads, possibly spread out
across multiple warps. Threads in a block are each assigned a block-locally unique

4

2.1 General-purpose GPU programming

1 __global__ void kernel_sum(float* a, float* b, float* c)

2 {

3 int id = blockDim.x * blockIdx.x + threadIdx.x;

4 c[id] = a[id] + b[id];

5 }

6

7 // ...

8

9 kernel_sum<<<blocksPerGrid,threadsPerBlock>>>(a, b, c);

Listing 1: A CUDA vector addition kernel.

identifier. Additionally, the threads in a block can synchronize and communicate
efficiently through shared memory [67].

A grid is a collection of blocks [42]. Blocks in a grid cannot communicate through
shared memory and cannot synchronize [67]. Every block in a grid has a grid-locally
unique identifier and every grid has a kernel launch–locally unique identifier.

When a kernel launch is programmed, the programmer is free to decide on the
number of threads per block, the number of blocks per grid, and the number of grids
to launch, subject to some constraints; the hardware imposes upper bounds on the
sizes of blocks and grids. These dimensions may be specified as scalars, 2D vectors,
or 3D vectors. In any case, the total number of threads per block, blocks per grid,
and grids to launch corresponds to the product of the elements of the respective
dimension vectors: A block with dimensions (2, 3, 2) contains 2 × 3 × 2 = 12 threads.
Identifiers for threads, blocks, and grids are encoded as 3D vectors in the space
defined by their respective dimensions.

To illustrate this, Listing 1 introduces a CUDA kernel that instructs every thread to
add two values together. The kernel_sum<<<blocksPerGrid,threadsPerBlock>>>
syntax launches kernel kernel_sum with threadsPerBlock threads per block and
blocksPerGrid blocks per grid. We assume that both threadsPerBlock and
blocksPerGrid are scalars. Because the number of grids is not explicitly speci-
fied, a value of one is implied. Line 3 of Listing 1 computes a globally unique thread
index, which is then used to the a, b, and c arrays.

5

2 Background

2.1.2 GPU memory

NVIDIA GPUs feature a complex partitioning of on-chip memory that includes
global, constant, texture, shared, and local memory spaces. Each of these memory
spaces are optimized for different use cases and differ in both their functional and
non-functional properties [57, 68]:

• Global memory is read-write per-grid memory.

• Constant memory is read-only per-grid memory.

• Texture memory is read-only per-grid memory that is optimized for 2D
memory access patterns.

• Shared memory is read-write per-block memory.

• Local memory is read-write per-thread memory.

In addition to these various kinds of on-chip memory, GPU kernels may also
access host memory directly, provided that it is page-locked. Page-locked memory,
also known as pinned memory, is guaranteed by the operating system to always be
present in random-access memory—it will never be paged out to disk.

Finally, unified memory is similar to pinned memory in that it is accessible to both
CPUs and GPUs. Unlike pinned memory, which is essentially CPU memory that is
shared with the GPU, unified memory pages automatically migrate to the device
that is currently using them, which can be either a CPU or a GPU [40].

2.2 The Julia programming language

The Julia programming language styles itself as a “fresh approach to numerical
computing” [16, 30]. In programming language terminology, it is a dynamic
programming language in a similar vein to Python, Matlab and R.

Julia sets itself apart from these other dynamic languages because Julia was
designed with speed in mind: Julia is Just In Time (JIT) compiled to native code by
the industrial-strength LLVM compiler framework [50].

To compile dynamic code to efficient machine instructions, the Julia compiler
aggressively specializes functions definitions for their argument types. For instance,
consider the add function in Listing 2. Because add’s argument types are not
constrained, it can be applied to any two arguments for which a binary addition

6

2.2 The Julia programming language

1 function add(x, y)

2 return x + y

3 end

4

5 add(2, 42)

6 add(1.0, 2.0)

Listing 2: Function specialization in Julia.

function is defined. Furthermore, because Julia is a dynamic language, we cannot
know how that binary addition function is implemented.

Typical dynamic languages implementations such as the CPython interpreter
resolve such uncertainty by dynamically looking up the definition of the binary
addition function for its argument types x and y prior to every invocation of the
addition function.

Julia takes a radically different approach: Whenever the Julia compiler encounters
a call to a function, it compiles the callee specifically for the argument types at the
call site. When compiling such a specialized callee, the Julia compiler uses type
inference to statically resolve dynamism at compile time. Compiled callees are
cached, so specialized compilation is a one-time cost for every combination of a
function and a tuple of argument types.

Returning to our example, this means that the add function will be compiled
differently based on how it is called. For instance, the call on line 6 will compile add
to native code that performs an integer addition and returns. Similarly, the call on
line 7 will compile add to native code that performs a floating-point addition and
returns. In both cases, all dynamism is resolved by the time control enters the add
function. This translates into an opportunity to generate highly efficient code for
add, similar to what one might expect from a C compiler.

This process of aggressive specialization allows code compiled by Julia’s JIT
compiler to match the performance of equivalent C/C++ code, as evidenced by a
number of micro-benchmarks [45].

2.2.1 Compilation pipeline

Like many other LLVM-based programming language implementations, the Julia
compiler accepts Julia source code as input, turns it into a Julia-specific Intermediate
Representation (IR), optimizes that IR and finally uses it to generate LLVM IR that is

7

2 Background

Julia
compiler
front-end

LLVM
IRgen LLVM CPU

Julia IR LLVM IR native code

Figure 2.2: The Julia compiler’s pipeline.

compiled to native code. This process is summarized graphically by Figure 2.2, a
figure that we will expand in Section 2.3 as we discuss how CUDAnative extends
the Julia compiler’s pipeline.

2.2.2 Garbage collection

A number of idiomatic Julia language features implicitly rely on having a GC in
place that allocates and collects memory. Listing 3 is an anthology of such language
features: (1) mutable and recursive data structures, (2) arrays, (3) exception handling,
and (4) dynamic multiple dispatch. Of these features, mutable and recursive data
structures depend solely on a GC and arrays depend on a GC plus some additional
bookkeeping logic. Exception handling and dynamic multiple dispatch depend on
a GC as well as complex, dedicated support mechanisms. The following list is a
detailed explanation of why each aforementioned feature depends on GC support:

1. Mutable data structures, that is, mutable struct types are managed by the
GC. Whenever an instance of a mutable struct type is created, it is stored in
a chunk of GC memory. When the instance becomes unreachable, also known
as dead, the GC will eventually collect the instance, recycling its memory for
use by other objects.

Vector2 as defined on line 2 of Listing 3 is an example of a mutable data
structure. Consequently, any Vector2 instance will be managed by the GC
and no Vector2 can be allocated without a GC or other automatic memory
management scheme.

The same holds for recursive data structures such as BinaryTreeNode on
line 7 of Listing 3. Non-recursive, immutable struct instances are a notable
exception: They are not managed by the GC unless they are boxed, that is,
copied to a GC-managed region of memory. Boxing is used to treat objects
of different types uniformly and occurs when, e.g., storing a non-recursive,
immutable struct instance in a dynamically-typed field.

8

2.2 The Julia programming language

2. Arrays are also managed by the GC. Line 15 of Listing 3 creates an array
containing three elements, line 16 performs an array comprehension: Syntactic
sugar for creating a new array that is the result of applying a mapping function
to another array.

In either case, the GC needs to allocate storage whenever an array is created.

3. Exception handling uses exception objects to describe errors. The excep-
tion handling mechanism that processes thrown exceptions does not know
which type of exceptions will be thrown in advance, so it only manipulates
GC-managed object references, turning raw objects such as non-recursive,
immutable struct values into object references by boxing them.

So, even if the BoundsError object created and thrown on line 20 of Listing 3
is a non-recursive, immutable struct instance, then the throw function will
still box the BoundsError object, requiring GC intervention.

4. Dynamic multiple dispatch occurs when the Julia compiler cannot statically
infer the types of a call’s arguments.

Julia includes a feature called multiple dispatch, which allows for a function to
have multiple definitions, each with a different argument list. Many modern
programming languages have a similar feature called function overloading,
which is the same as static multiple dispatch, that is, multiple dispatch that
can be resolved at compile time.

Multiple dispatch is exemplified by lines 26 and 27 of Listing 3: typeName
has two definitions: One for Int values and another for Float64 values. The
precise definition that is invoked when typeName is called depends on the
arguments with which typeName is called.

Now consider line 29 of Listing 3 and take val to be some unknown quantity.
When the Julia compiler cannot tell what a call’s argument types are as it is
compiling the call, the Julia compiler will insert code that runs Julia’s call
resolution logic and compiles a specialized version of the callee whenever
the call is encountered. This is called dynamic multiple dispatch and it
differentiates Julia’s dynamic dispatch mechanism from other languages’
overloading implementations.

Like exception handling, dynamic multiple dispatch depends on the ability
to create GC-managed objects such that arguments of unknown types can be
inspected and processed in a uniform manner by the call resolution logic.

9

2 Background

The features from Listing 3 are pervasive in typical Julia code. To support them,
Julia ships with a GC that is part of Julia’s runtime library. Julia’s runtime library
is coded in C++. Whenever the Julia compiler encounters a feature that requires
intervention from the GC, it generates a call to an appropriate GC-related runtime
library function.

Julia’s runtime library is specific to the architecture for which it is compiled.
Because of this, existing runtime library functionality cannot be reused when the
Julia compiler is coaxed into generating code for any architecture other than the one
for which it was compiled. This is not a real limitation for typical Julia usage, but it
is an issue for CUDAnative, which we will discuss in the next section.

2.3 CUDAnative: A Julia-to-GPU compiler

CUDAnative is a Julia package that compiles Julia code to Parallel Thread Execu-
tion (PTX) instructions suitable for execution on NVIDIA GPUs [15, 58].

Listing 4 is a taste of what that looks like in practice: Kernels are encoded as
regular Julia functions, which are transparently compiled to GPU instructions by
CUDAnative. In this case, the vadd function is used as a GPU kernel by starting it
with the @cudamacro on line 9. The vadd kernel from Listing 4 is both functionally
and structurally equivalent to the CUDA kernel from Listing 1. Indeed, line 2 of
Listing 4 computes a unique thread index and line 3 loads two values, adds them
and stores the result.

2.3.1 Compilation strategy

CUDAnative is designed to take advantage of existing Julia compiler infrastructure
to compile Julia code for NVIDIA GPUs. Figure 2.3 depicts the interactions between
the Julia compiler and CUDAnative: Code that is compiled by CUDAnative passes
through approximately the same machinery that is used for compiling regular Julia
code. CUDAnative intercepts LLVM IR generated by the Julia compiler just before
that IR is transformed in architecture-specific ways and sends it to LLVM’s PTX
back-end instead of sending it to the code generator for the CPU, as the unmodified,
CPU-targeting Julia compiler would have done [66].

At this point, one might expect that CUDAnative can compile arbitrary Julia code
for GPUs. This is true to some extent: CUDAnative’s apt use of the Julia compiler
means that it can handle all Julia syntax. However, the Julia compiler relies on a

10

2.3 CUDAnative: A Julia-to-GPU compiler

1 # Mutable data structures.

2 mutable struct Vector2

3 x::Float64

4 y::Float64

5 end

6

7 # Recursive data structures.

8 struct BinaryTreeNode

9 value::Int

10 left::Union{BinaryTreeNode,Nothing}

11 right::Union{BinaryTreeNode,Nothing}

12 end

13

14 # Arrays.

15 xs = [1, 2, 42]

16 ys = [x * x for x in xs]

17

18 # Exception handling.

19 try

20 throw(BoundsError())

21 catch ex

22 # ...

23 end

24

25 # Dynamic multiple dispatch.

26 function typeName(x::Int) = "Int"

27 function typeName(x::Float64) = "Float64"

28

29 name = typeName(val)

Listing 3: Julia language features that rely on having a GC.

11

2 Background

1 function vadd(a, b, c)

2 i = (blockIdx().x-1) * blockDim().x + threadIdx().x

3 c[i] = a[i] + b[i]

4 return

5 end

6

7 # ...

8

9 @cuda threads=len vadd(d_a, d_b, d_c)

Listing 4: CUDAnative’s vadd.jl example, which computes the sum of two arrays.

runtime library to implement more sophisticated language features, such as garbage
collection, exception handling, and dynamic multiple dispatch. Julia’s runtime
library is CPU-specific and hence CUDAnative cannot reuse it. Consequently,
whenever the Julia compiler generates a call to the runtime library, CUDAnative
must cope with that call somehow.

Broadly speaking, CUDAnative has two mechanisms for handling calls to the
Julia runtime library.

1. If the runtime library function can reasonably be re-implemented for GPUs,
then CUDAnative may supply its own version of the runtime library function
and link it with kernels.

For instance, prior to this work, CUDAnative did not support arbitrary uses of
GC-related functionality but did implement boxing and unboxing functions for
primitive types by implementing homonymous functions in the CUDAnative
GPU runtime library.

2. If the runtime library function’s semantics or signature rule out a GPU im-
plementation, then CUDAnative throws a compile-time error. In effect, this
disables the use of a language feature for all CUDAnative kernels.

Instances of the latter are painfully abundant. Core features such as exception
handling, garbage collection, and dynamic multiple dispatch are implemented by
the runtime library in such a way that CUDAnative cannot reasonably be expected
to re-implement the runtime library functionality.

Sometimes, the fundamental issue blocking CUDAnative implementations for
advanced Julia language features is that these features are truly incompatible with

12

2.3 CUDAnative: A Julia-to-GPU compiler

Julia
compiler
front-end

LLVM
IRgen

Targeting
GPU?

amd64

back-end CPU

Julia
runtime
library

PTX
back-end

GPU

Julia IR LLVM IR

No

Yes

amd64 code

PTX code

Figure 2.3: CUDAnative’s original compilation pipeline.

GPU environments. For instance, Julia’s interpretation of dynamic multiple dispatch
may require compiling a specialized version of a function using the Julia and LLVM
compilers, neither of which runs on GPUs.

But more often, the issue at hand is that the Julia runtime library’s implementations
of advanced language features is what blocks a successful GPU implementation.
For example, this thesis shows that garbage collection can be implemented for
GPU kernels, albeit not using the same interface as the Julia runtime library’s GC.
Similarly, exception handling has been implemented for Java code that compiles
to GPU kernels, but that implementation does not adhere to the setjump-longjump
exception handling framework preferred by the Julia compiler [62].

Notice the dotted arrow in Figure 2.3. This arrow represents a dependency on the
interface exposed by the runtime library and complicates matters for CUDAnative.
As can be inferred from the positioning of the arrow, the Julia compiler generates calls
to runtime library functions before CUDAnative has an opportunity to intervene. So
the proverbial damage is already done by the time CUDAnative receives LLVM IR
from the Julia compiler—CUDAnative is tied to the Julia runtime library’s interface.

2.3.2 Workarounds for problematic runtime library functions

For some language features, the restrictions imposed by the Julia runtime library’s
interface can be short-circuited by a language-level re-implementation.

13

2 Background

To illustrate this, we will consider the challenge of implementing arrays for
GPUs. The Julia compiler lowers one-dimensional array creation to calls to
jl_alloc_array_1d, a function that takes two arguments: the array’s element
type and the number of elements in the array.

At the time of writing, there is little hope of re-implementing jl_alloc_array_1d
as a GPU runtime library function because jl_alloc_array_1d’s interface forces it
to rely on reflection to discover essential information such as the size of an element in
the array. Specifically, the issue is that jl_alloc_array_1d is given a pointer to the
element type of the array to allocate. The Julia compiler places type information in
CPU memory, not in GPU memory. This is no burden on jl_alloc_array_1d’s CPU
implementation, which can freely dereference pointers to find the size of the element
type’s instances. However, the GPU cannot successfully dereference pointers into
arbitrary CPU memory, making basic facts about the element type impossible to
discover and a direct re-implementation of jl_alloc_array_1d infeasible. We
hence conclude that supporting arrays by naively re-implementing the Julia runtime
library’s interface is out of reach.

To work around this issue for kernels that do require an array type, CUDA-
native offers CuDeviceArray: A user-defined type that uses multiple dispatch to
implement the high-level interface exposed by built-in arrays. This allows for
CuDeviceArray to be manipulated in the same way as built-in arrays, without
constraining CuDeviceArray to the problematic low-level interfaces defined by
Julia’s runtime library.

In general, we will call this strategy user-defined alternatives: The practice of
replacing data types and functions not supported by CUDAnative with CUDA-
native-compatible language-level implementations.

Contextual dispatch

When calls to problematic runtime library functions are generated by functions from
Julia’s standard library, we can bypass the runtime library by re-implementing those
exact functions specifically for the GPU using a process called contextual dispatch [77].

For example, contextual dispatch allows us to replace the CUDAnative-unsupported
sin function from the Julia standard library with a GPU-friendly version in such a
way that the original version is called on the CPU and the GPU-specific version is
called on the GPU.

14

2.3 CUDAnative: A Julia-to-GPU compiler

Limitations

User-defined alternatives and contextual dispatch are potent mechanisms, but they
do have their limitations. Most prominently, there are some Julia language features
that are implemented by the compiler directly, without calling functions from Julia’s
standard library. Neither workaround applies to such features.

Mutable and recursive data structures are a prime example: the Julia compiler
directly lowers allocations of such structures to runtime library calls; no functions
from the standard library are involved. Due to the standard library not being
involved, there is no interface to mimic or override, making both contextual dispatch
and user-defined alternative types unsuitable.

Array literals, array comprehensions and exception handling suffer the same
fate: they all bypass the standard library in the same way, making language-level
workarounds inadequate, especially if some degree of source code compatibility is
to be maintained.

2.3.3 The case for native language features

We have thus far discussed why implementing certain Julia language features for
GPUs is difficult. This section presents arguments for why implementing missing
language features for GPUs is useful.

First off, there is ease of programming: Implementing the very language features that
make Julia suitable for high-performance computing at a high level of abstraction
for CPUs would allow for the same idioms to be applied to GPUs.

This also applies to the workarounds presented in the previous section, limitations
notwithstanding. User-defined alternative types and functions can bring program-
ming patterns to the GPU, albeit in a slightly different form. Contextual dispatch
can bridge the gap entirely in some cases.

A second argument for GPU support for Julia language features is code reuse: The
Julia standard library defines many data types and functions that might be useful
in CUDAnative kernels. Hash maps and sets, for example, are ubiquitous in many
algorithms.

The standard library assumes that all Julia language features are supported, so
it does not restrict itself to a subset of Julia for its implementation. CUDAnative
kernels, however, do need to restrict themselves to a subset of the Julia language.
Consequently, many types and functions from the standard library cannot be used
in CUDAnative kernels because these types and functions rely on CUDAnative-

15

2 Background

unsupported language features. This is also the case for hash maps and sets. If a
CUDAnative kernel needs to make use of such a data structure, then it needs to
create its own.

No workaround can remedy this: GPU-friendly versions of many standard library
types and functions can surely be created, but doing so does not address the issue of
code reuse. Indeed, it is in fact a form of code duplication.

Finally and perhaps most importantly, we also need to consider compositional
schemes that build on CUDAnative. Such compositional schemes attempt to transpar-
ently expose the power of GPUs in a programmer-friendly manner, that is, without
forcing the idiosyncrasies of GPU programming onto programmers. We discuss two
such compositional schemes: CuArrays and GPUifyLoops.

CuArrays

CuArrays is a Julia package that defines a type—aptly called CuArray—that im-
plements the same interface as regular Julia arrays [13]. CuArray instances differ
from Julia’s built-in arrays in that they store their contents in GPU memory and
manipulate those contents using GPU kernels.

The CuArray type is designed to transparently expose the computational power of
GPUs: a CuArray instance can be manipulated in exactly the same way as a normal
array, but CuArray objects automatically perform computations in a massively
parallel fashion on the GPU rather than relying on the CPU, as the built-in array type
does. In short, CuArray’s promise is to offer the convenience of array programming
and the power of GPUs.

Moreover, there is quite a bit of synergy between the CuArray type and Julia’s
type system. For instance, consider Listing 5. On line 1, a function called dot is
defined. dot computes the dot product of two vectors by first performing a pointwise
multiplication and then summing up the results. dot’s implementation is idiomatic
Julia code, as one might write for built-in Julia arrays. Indeed, line 7 computes the
dot product of two built-in Julia arrays.

Line 10 demonstrates the extraordinary usefulness of the CuArray type. CuArray
uses multiple dispatch to implement the array interface in such a way that com-
putations are performed by the GPU instead of the CPU. By passing two CuArray
instances to dot, we completely change the underlying implementation of the dot
product: The pointwise multiplication and subsequent reduction are performed by
the GPU this time around. This is quite a feat, considering that dot does nothing to
explicitly support GPU acceleration.

16

2.3 CUDAnative: A Julia-to-GPU compiler

1 dot(A, B) = sum(A .* B)

2

3 xs = [1, 2, 3]

4 ys = [4, 5, 6]

5

6 # Compute the dot product on the CPU.

7 z_1 = dot(xs, ys)

8

9 # Compute the dot product on the GPU.

10 z_2 = dot(CuArray(xs), CuArray(ys))

Listing 5: CuArrays in action.

The abstraction afforded by CuArray allows for functions and libraries originally
designed with built-in arrays in mind to be GPU-accelerated without any modifica-
tions at all to those functions and libraries. It does so by automatically generating
GPU kernels for common operations such as map, broadcast and reduce.

However, CuArray’s abstraction breaks down when a function fed to such an
operation does not adhere to the restricted language feature set offered by CUDA-
native.

Suppose, for example, that we would like to map an array of integers to the
number of prime factors of each integer in the array. This is exactly what Listing 6
does: It defines a naive factorization function, factorize, as well as a function
that computes the number of prime factors for an integer, factor_count. Then,
on line 22, factor_count is used to map an array of integers to the arity of their
factorizations. The factor_count. syntax represents a broadcast, which is in this
case equivalent to applying factor_count to every element of the array.

Line 27 of Listing 6 attempts to run the same computation on the GPU using
CuArrays, but fails. The use of an array in factorize injects a jl_alloc_array_1d
call into the GPU kernel generated for the broadcast, triggering an error message that
is bound to be cryptic at best for programmers who are not intimately acquainted
with CuArrays’ implementation.

This example demonstrates that a single use of a CUDAnative-unsupported
language feature can destroy the abstraction offered by CuArrays, effectively making
CuArrays’ abstraction somewhat leaky and brittle. Furthermore, there is nothing
special about arrays as a CuArrays-breaking feature. Any CUDAnative-unsupported

17

2 Background

1 # Naively factorizes an integer.

2 function factorize(n)

3 results = []

4 i = 2

5 while n > 1

6 if n % i == 0

7 n = div(n, i)

8 push!(results, i)

9 else

10 i += 1

11 end

12 end

13 return results

14 end

15

16 # Computes the number of factors of an integer.

17 factor_count(n) = length(factorize(n))

18

19 xs = [15, 44, 60]

20

21 # Computes the number of factors for each element in `xs` (CPU).
22 factor_count.(xs)

23

24 # Computes the number of factors for each element in `xs` (GPU).
25 # Throws an error: "unsupported call through a literal pointer

26 # (call to jl_alloc_array_1d)"

27 factor_count.(CuArray(xs))

Listing 6: CuArrays’ abstraction is leaky for features not supported by CUDAnative.

18

2.3 CUDAnative: A Julia-to-GPU compiler

language feature will do, from mutable and recursive data types to exception handling
and dynamic multiple dispatch.

Any feature that breaks CuArrays’ abstraction is problematic. One could plausibly
create a copy of such a function or library and modify it to become GPU-specific,
but that runs contrary to one of CuArrays’ design goals: To transparently accelerate
GPU-unaware functions and libraries.

GPUifyLoops

GPUifyLoops is a Julia package that aims to reduce code duplication for high-
performance code that targets both CPUs and GPUs [23]. GPUifyLoops introduces a
variety of Julia macros that enable programmers to construct Julia functions that can
execute efficiently both on CPUs and GPUs.

Listing 7 shows how GPUifyLoops can be used to define a kernel, called kernel
in this case, that can run both on CPUs and GPUs.

The @loop macro invocation on line 2 expands to for i in 1:size(A, 1)—a
typical for loop—when compiled for the CPU and for i in threadIdx().x when
compiled for the GPU. In the latter case, Julia understands the for loop to be
semantically equivalent to a block of code wherein i equals threadIdx().x, the
thread index in a GPU kernel.

The @synchronizemacro invocation on line 5 synchronizes the threads in a block
when run by the GPU and does nothing when run by the CPU.

Lines 10 and 15 show how the kernel can be applied with relative ease to both
CPU and GPU data. In practice, this allows for a straightforward partitioning of
workloads between CPUs and GPUs without duplicating code.

Like CuArrays, GPUifyLoops’ viability is affected by features unsupported by
CUDAnative. Indeed, because GPUifyLoops kernels target both CPUs and GPUs,
they need to restrict themselves to a subset of the Julia language and functions that
is supported by both CPU and GPU targets. Consequently, GPUifyLoops kernels
cannot use any CUDAnative-unsupported features nor can they use user-defined
alternatives, because the latter are designed to be GPU-specific. Contextual dispatch
can resolve this issue in some cases, but its applicability is limited.

2.3.4 Proof-of-concept object allocation for CUDAnative kernels

We have considered three arguments for implementing currently-unsupported lan-
guage features in CUDAnative: ease of programming, code reuse and compositional

19

2 Background

1 function kernel(A)

2 @loop for i in (1:size(A,1); threadIdx().x)

3 A[i] = 2 * A[i]

4 end

5 @synchronize

6 end

7

8 # Run the kernel on the CPU.

9 data = Array{Float32}(undef, 1024)

10 kernel(data)

11

12 # Run the kernel on the GPU.

13 kernel(A::CuArray) = @launch CUDA() kernel(A, threads=length(A))

14 data = CuArray{Float32}(undef, 1024)

15 kernel(data)

Listing 7: GPUifyLoops in action. Adapted from https://github.com/vchuravy/

GPUifyLoops.jl/blob/master/examples/simple.jl.

schemes. Workarounds exist that apply mostly to ease of programming, but have
limited pertinence to the other two use cases.

The absence of language features underpinned by the GC is particularly painful
in CUDAnative because there is not always a cut-and-dried workaround for these
features and their use is idiomatic in Julia. The latter point is evidenced by Listing 6,
the integer factorization example.

As identified in Section 2.2.2, mutable and recursive data structures depend
exclusively on an automatic memory management scheme such as a GC to work
correctly. Other unsupported language features also depend on a GC, but they
require varying degrees of additional, dedicated logic.

As a stopgap measure, there exists a proof-of-concept implementation of the Julia
GC’s allocation function for CUDAnative kernels, implemented as a homonymous
function in CUDAnative’s GPU runtime library. Said implementation of memory
allocation calls CUDA malloc to allocate memory for objects and then never frees
that memory. In the remainder of this work, we will call memory management
schemes that allocate but never free trivial.

The proof-of-concept CUDA malloc based re-implementation of the Julia GC’s
allocation function allows for mutable and recursive data structures to be created
by CUDAnative kernels. The proof-of-concept allocation implementation does

20

https://github.com/vchuravy/GPUifyLoops.jl/blob/master/examples/simple.jl
https://github.com/vchuravy/GPUifyLoops.jl/blob/master/examples/simple.jl

2.3 CUDAnative: A Julia-to-GPU compiler

not support other language features such as arrays that depend on dedicated
Julia runtime functions, although support for these features can be added by re-
implementing those functions in the GPU runtime library.

However, the proof-of-concept allocation implementation has two fundamental
limitations that diminish its usefulness in practice:

1. It leaks memory as kernels execute. Long-running and liberally-allocating
kernels can hence run out of memory—the CUDA malloc heap is only 8 MiB
by default.

2. Memory allocated by a kernel using CUDA malloc is not and cannot be
automatically freed after the kernel completes. That is, memory leaks persist
across kernel invocations. Because of this, even kernels that allocate sparingly
will eventually run out of memory if enough kernels are executed in sequence.
Having a long-running program invoke a sequence of kernels is common in
practice and the CUDA malloc heap can no longer be expanded once a kernel
has run [57], making permanent GPU memory leaks a serious issue.

2.3.5 Goals of this thesis

The goal of this thesis is to implement a GC for CUDAnative-compiled Julia code,
in the first place to support mutable and recursive data structures without leaking
memory. To accomplish this, we discern two sub-goals:

1. Untether CUDAnative from the Julia runtime library’s interface by abstracting
over GC-related constructs in the LLVM IR generated by the Julia compiler.
Push the CPU-specific lowering of that abstraction to Julia runtime library
calls down into the parts of the Julia compiler that explicitly target CPUs.

2. Implement a GC for CUDAnative-compiled Julia code. Have CUDAnative
lower our new GC abstraction down to calls to that GC’s interface.

The implementations of these sub-goals are discussed in detail in Chapter 3 and
Chapter 4, respectively.

Visually, the architecture this thesis envisages and implements corresponds to
Figure 2.4: The CUDAnative-specific parts of the compilation pipeline are no longer
tied to the Julia runtime library’s GC interface and CUDAnative has its own GC
library.

21

2 Background

Julia
compiler
front-end

LLVM
IRgen

Targeting
GPU?

amd64

back-end CPU

CPU GC

PTX
back-end

GPU

GPU GC

Julia IR LLVM IR

No

Yes

amd64 code

PTX code

Figure 2.4: CUDAnative’s modified compilation pipeline.

2.4 Garbage collection

We have discussed Julia’s dependency on a GC and how that dependency affects
CUDAnative, but we have thus far sidestepped the question of how a GC works.
This section aims to remedy that.

Automatic memory management schemes, including garbage collection, allow
programmers to allocate in-memory objects without having to explicitly free that
memory when it is no longer in use; the GC can automatically determine which
objects are still in use and which ones are not. Objects in the former category are
called live, those in the latter are called dead or garbage. When pressured for memory,
a GC will look for dead objects and free them, allowing for the memory they occupy
to be reused [82].

Two approaches have evolved to address the problem of automatic memory
management: reference counting and tracing garbage collection. Reference counting
equips every object with a reference count, which is equal to the number of references
to the object. When an object’s reference count drops to zero, the application knows
that there are no more references to the object and deallocates it.

22

2.4 Garbage collection

While conceptually simple, reference counting cannot cope with cyclic object
references: when one object refers to another object and vice-versa, then these two
objects’ reference counts will always be greater than zero, even if there are no other
references to the objects other than the cycle. This is known as a dead cycle [18].

Julia uses tracing garbage collection, usually shortened to garbage collection. A
tracing GC does not suffer from dead cycles. Tracing GCs discern live objects from
dead objects by reducing their task to a graph problem: “Given a directed graph of
objects in memory and a set of root objects, find and recycle objects not reachable
from the root set.”

In practice, the root set is the union of all global variables and local variables in
active functions; all live objects can be found by following paths of object references
that start at these variables. The edges in an object graph correspond to object
references or pointers that are stored by objects.

In our discussion of various approaches to the problem of garbage collection, we
will emphasize in particular those approaches that are used by Julia’s GC and the
GPU GC we will introduce in Chapter 3 of this thesis.

2.4.1 A taxonomy of garbage collectors

Over time, many different approaches to the problem of garbage collection have
been proposed. We will categorize GCs based on five aspects of garbage collectors:
precise/conservative, moving/non-moving, collection strategy, allocation strategy,
and threading. There are other salient aspects of GCs, but they are not relevant in
the context of this thesis.

Precise/conservative

A GC is supposed to find and recycle objects unreachable from the root set. Reacha-
bility is a known concept in graph theory, but how can we tell what an in-memory
object’s outgoing edges are? Similarly, how do we know the contents of the root set?
These questions are precisely what gives rise to the precise/conservative distinction.

We say that a GC is precise if it can precisely determine the root set and every object’s
set of outgoing edges. Precise garbage collectors do not divine this information on
their own. Rather, the compiler generates additional code or data that a precise
garbage collector reads at run time to determine the root set and outgoing edges
[10, 41].

23

2 Background

Julia’s GC is precise: it detects references from one object to another by inspecting
the type information of objects as well as the data in those objects’ fields. Julia’s GC
represents the root set using a per-thread linked list of GC frames, that is, arrays
of root object references. Section 3.2.2 will describe Julia’s root set management
discipline in more detail.

Conservative GCs are the very opposite of precise GCs: They cannot precisely
tell what the root set and sets of outgoing edges are. To cope with this, they
conservatively approximate these quantities [19].

Typical conservative GCs approximate references from one object to another by
iterating over all aligned, pointer-sized slices of object data. If such a slice of data can
be interpreted as a reference to another object, then the GC conservatively assumes
that it is one. In a similar vein, conservative GCs can conservatively approximate
the root set by iterating over all aligned, pointer-sized slices of data on the stack and
in global memory.

For an example of a conservative GC, see the Boehm–Demers–Weiser GC, a
conservative GC for the C and C++ languages, which do not offer any compiler
support for GCs [19]. Despite its origins as a GC for C and C++, the Boehm–Demers–
Weiser GC has become a popular choice for managed language implementations,
including Mono and Crystal [49, 80].

Moving/non-moving

It is sometimes advantageous for a GC to be able to move objects around in memory.
GCs that do so are called moving GCs. Two prominent motivations for moving
objects are (1) reducing fragmentation and (2) collection strategies that depend on
the GC’s ability to move objects [82].

To move an object in memory, a GC needs to copy the object to its new address
and update all pointers to the moved object. Updating pointers can be challenging
because it implies that the root set must also be rewritten. This usually requires
some form of compiler support: Code generated for moving GCs must still function
in the face of changing object pointers.

Language implementations that offer no such compiler support all but rule out
moving GCs: GCs for those implementations are non-moving. That is, any moving
GC must also be a precise GC because moving GCs must not accidentally update
non-pointer fields. Conservative GCs cannot be sure that a pointer-sized slice of
data is an object reference—they merely conservatively assume that it is one.

24

2.4 Garbage collection

The converse is not true. Not all precise GCs are moving, as evidenced by Julia’s
GC, which is precise and non-moving.

Collection strategy

Over the course of many years, a variety of strategies have been developed for
finding and collecting garbage objects.

Mark and sweep is arguably the simplest collection strategy: It performs a traversal
of the object graph, starting at the roots. Reachable objects are left untouched; the
memory used for unreachable objects is reused. One of the key advantages of
mark-and-sweep collectors is that they do not require any special compiler support:
Mark-and-sweep collectors are non-moving by default and can be conservative [82].

More advanced strategies are typically superior to mark and sweep in terms
of non-functional aspects such as time overhead, pause times, and concurrency.
However, more advanced collection strategies typically require increasingly deep
compiler support.

For instance, a generational GC subdivides allocated objects into two or more
“generations,” usually a “new” generation also known as a nursery for objects that
have thus far not participated in a collection yet and an “old” generation for objects
that have [8]. Based on the heuristic that “objects die young,” generational GCs
collect younger generations separately and more frequently than older generations.

Generational GCs are used in a variety of managed language implementations:
Mono, the .NET framework, and Julia all implement generational GCs [49,81]. Julia’s
GC uses a conventional two-generation scheme.

A generational GC’s core assumption when collecting a generation is that older
generations do not point to younger generations. This allows the GC to compute
liveness in younger generations without taking the objects in older generations into
account.

However, this assumption does not always hold in imperative languages, which
allow for objects in older generation to be modified to point to objects in younger
generations. For instance, consider Listing 8. A new object is created and a reference
to that object is stored in an object of which we will assume that it is in the “old”
generation.

To avoid having to mark the entire old generation every time the nursery is
collected, compilers that target generational GCs—including the Julia compiler—
emit so-called write barriers on every write of an object reference to a field of some
other object, as in Listing 9. Such a write barrier essentially informs the GC that a

25

2 Background

1 new_object = create_new_object()

2 old_object.field = new_object

Listing 8: Code that violates a generational GC’s core assumption.

1 new_object = create_new_object()

2 old_object.field = new_object

3 write_barrier(old_object, new_object)

Listing 9: A write barrier–augmented version of Listing 8. The write barrier is highlighted.

write is taking place, allowing it to compose a set of all younger-generation objects
that may be live because they are pointed to from older-generation objects.

Allocation strategy

Memory allocation is a crucial component of a GC’s functionality, as well as an area
of research in its own right. We will consider two types of allocators in this section:
free list allocators and bump allocators.

Free list allocators A free list allocator is a simple type of memory allocator that
can be used either as a standalone allocator or as a component in a more complex
system, such as a GC. A free list allocator functions by storing unallocated or free
chunks of memory in a linked list—the free list [83].

To allocate a new object, a free list allocator traverses the free list until it finds
a free chunk of memory that is sufficiently large to accommodate the object’s size.
That free chunk is then removed from the free list and allocated to the object. If
the free chunk is larger than the size of the object to allocate, then the free chunk is
split into two chunks first. The first chunk is allocated to the object and is just large
enough for the object. Any remaining memory is moved into the second chunk and
added to the free list.

To free a garbage object, a free list allocator adds that object’s chunk of memory to
the free list.

When multiple threads want to access the free list, a mutex is typically used to
ensure that free list modifications are atomic.

Julia’s GC uses free list allocators both for large objects and smaller objects. To
minimize allocation latency for the latter category of objects, Julia’s GC introduces

26

2.4 Garbage collection

Live Garbage Live Free

Figure 2.5: An illustration of a situation where a bump allocator cannot recycle garbage
objects.

multiple “pools” of free lists that can be used for allocating objects. Large objects
share a single free lists.

Bump allocators A bump allocator is an even simpler type of memory allocator.
A bump allocator manages a pre-allocated, contiguous buffer of storage. The only
state retained by a minimal bump allocator is a pointer to the first unallocated byte
in that buffer. We will call this pointer the free pointer.

To allocate a chunk of memory, a bump allocator increments its free pointer by the
number of bytes to allocate and returns the free pointer’s old value.

This type of allocator has vanishingly little run time overhead because incre-
menting a pointer is extraordinarily cheap on modern hardware. Furthermore,
bump allocators can be shared by multiple threads in a lock-free manner because
pointer increments can be performed atomically using a dedicated atomic addition
instruction.

The Achilles’ heel of the bump allocator is that it leaks memory when used as a
standalone allocator because it cannot effectively recycle memory independently.
To see why, consider Figure 2.5. In that listing, we would like to recycle a garbage
object, but we cannot: The free pointer is our only means of distinguishing between
free and allocated memory. We cannot move the free pointer backward because that
would inappropriately free the second live object in the figure.

Bump allocators can overcome this weakness by forming a symbiotic relationship
with a moving GC. For example, consider a semispace collector [83]. Such a collector
maintains two equally-sized, contiguous regions of free memory. Each region is
managed by a bump allocator. Only one of these regions is in use at any given time.

When a collection is triggered, the collector moves all live objects from the active
region to the inactive region. As the collector moves live objects, it ensures that these
objects form a contiguous region of storage. The inactive region’s free pointer is then
set to the end of the last copied object in the inactive region. Finally, the collector
marks the inactive region as active and vice-versa.

Semispace collectors can be highly efficient, even outpacing stack allocation for
sufficiently large memory sizes [7]. Semispace collectors appear to be particularly
popular in the Lisp family of programming languages [11, 27, 69].

27

2 Background

Threading

Most prominent garbage collection algorithms were historically designed for single-
threaded programs. In such programs, one can take for granted that the root set and
object graph do not change during a collection.

However, this is not the case in multi-threaded programs: If one thread is collecting
garbage and another is freely performing computations, then the latter might change
the object graph and/or the root set. This is a problematic proposition for all of the
collection strategies described in this section.

A common approach to work around this issue is based on the notion of safepoints
[9]. A safepoint is a point in the instruction stream of a program at which a collection
may safely occur. When a thread is in a safepoint, the state of its root set must be
stable and correct. For moving GCs, a safepoint is also a point in the program at
which object addresses may safely change due to a moving collection.

Safepoints do not arise by accident. Instead, the compiler deliberately ensures
that certain points in the program become safepoints. Typically, function calls and
loop back-edges are promoted to safepoints.

Interestingly, safepoints are not necessarily specific to multi-threaded programs.
Compilers for single-threaded programs may also introduce safepoints as an opti-
mization. By analyzing the instruction stream being compiled, the compiler may
detect that ranges of instructions cannot possibly trigger a collection and promote to
safepoints only those instructions that can trigger a collection. The Julia compiler is
such a compiler. Only a handful of instruction types give rise to safepoints, allowing
the compiler to materialize the root set at safepoints only instead of keeping the root
set well-defined at all times.

In multi-threaded programs, these safepoints are augmented by the compiler with
calls to a safepoint polling function [6]. Such a polling function checks if a collection
is pending. If no collection is pending, then the polling function does nothing. If
a collection is pending, then the polling function notifies the GC that the current
thread is in a safepoint and waits for the collection to complete. The collection itself
starts when all threads are in a safepoint.

By pausing non-collection threads, safepoint polling functions ensure that the
root set and object graph do not change during a collection. Thanks to this property,
collection algorithms originally intended for single-threaded programs become
applicable to multi-threaded programs.

28

2.4 Garbage collection

The Julia compiler does not insert safepoint polling functions; Julia programs
remain, at the time of writing, mostly single-threaded.

29

3 Garbage collection abstractions

for Julia

The first main contribution of this thesis is the addition of a new layer of abstraction
to the Julia compiler, pursuant to the first goal set out in Section 2.3.5. This chapter
describes that contribution, its requirements, and related preexisting Julia compiler
machinery.

To create the conditions in which a GPU GC for Julia might thrive, we need to find
or introduce an appropriate abstraction layer. On the functional side, CUDAnative
needs be able to intercept the LLVM IR generated by the Julia compiler before the IR
is made dependent on the low-level interface to Julia’s CPU GC.

3.1 Requirements

We want an appropriate abstraction layer for GC information. But what, exactly, does
“appropriate” mean for an abstraction, especially a compiler abstraction? It appears
that this question has yet to be addressed in the literature. The nature of abstractions
in computer science has been discussed extensively [24,47,48]. So has the practice of
requirements engineering in general, in which abstraction is widely regarded as an
important tool [56, 61, 75]. However, requirements for abstractions have eluded further
investigation thus far.

As a novel contribution, we introduce two metrics for evaluating the appropriate-
ness of abstractions in general and apply them to the problem at hand:

1. Robustness: The degree to which an abstraction can accommodate divergent
implementations of some feature.

2. Thinness: The amount of engineering required to lower the abstraction to
something concrete.

One can easily come up with an abstraction that is maximally robust and minimally
thin: The source code being compiled, for example. Indeed, starting from the source

31

3 Garbage collection abstractions for Julia

code gives a compiler unparalleled latitude in how to compile said source code but
implies that every source code–level abstraction needs to be lowered.

Similarly, a maximally thin and minimally robust abstraction would be a compiler’s
output. There are no abstractions left to speak of in native code—the code is the only
implementation of itself.

In practice, what we want is an abstraction that is sufficiently robust to accommo-
date the implementations we have in mind while being as thin as possible given this
constraint.

Concretely, we want to abstract over GC-related information in the Julia compiler
in a such a way that supports both the existing CPU GC as well as a range of other
GCs, including a GPU GC. This is the robustness constraint. Additionally, we want
this abstraction to be wafer-thin: It should be possible to lower the abstraction in an
entirely formulaic manner. Lowering the abstraction should not require convoluted
analyses.

Our reasoning for introducing this fairly strict thinness requirement is that
CUDAnative is developed separately—“downstream”—from Julia itself. Hence,
duplicated logic in complicated abstraction lowerings would not just represent a
one-time engineering effort; it would be a continuous maintainability headache. Bug
fixes and improvements from Julia’s lowering would have to be manually translated
and applied to CUDAnative’s lowering, which would be an undue burden on
CUDAnative’s limited development resources.

3.2 Preexisting abstractions

Figure 3.1 gives us an overview of all GC abstractions in the Julia compiler. A first,
trivial abstraction we can consider is the Julia source code that is sent to the Julia
compiler. Information that is pertinent to the GC is entirely implicit in this form.

The Julia compiler then parses the source code into an untyped Abstract Syntax
Tree (AST) in which GC-related information is still implicit. The Julia compiler’s
semantic analysis components then generate a typed AST from the untyped AST. In
such a typed AST, the distinction between GC-managed objects and other data can
be made based on the types of variables and expressions.

An IR generation pass, abbreviated as IRgen, then generates LLVM IR from the
typed AST. The IRgen pass annotates every pointer to a GC-managed object with a
particular LLVM IR address space to distinguish between pointers to GC-managed
objects and other pointers [31]. The former are part of the root set, the latter are not.

32

3.2 Preexisting abstractions

Source
code

implicit

AST
implicit

Typed AST
types

LLVM IR
address
spaces

LLVM IR
runtime

library calls

amd64

runtime
library calls

parsing analysis

IRgen

lowering codegen

Figure 3.1: Overview of GC abstractions in the Julia compiler.

An LLVM address space is an integer identifier that is included in the type of
an LLVM IR pointer [31]. LLVM’s optimizer must preserve address spaces as it
optimizes code, but the meaning of an address space is loosely-defined; back-ends
and front-ends are free to introduce their own interpretations of address spaces.

Because of these characteristics, the Julia compiler can safely tag GC-relevant
pointers in LLVM IR with appropriate address spaces and send the IR through
LLVM’s optimizer before running the GC frame lowering pass. The GC frame
lowering pass replaces the implicit root set defined by address space–tagged pointer
values with explicit calls to Julia’s runtime library.

Finally, the fully lowered LLVM IR is sent to an appropriate LLVM back-end,
which produces native code for the target architecture.

We observe that every abstraction-lowering transformation in Julia’s compiler
pipeline produces a more specialized and more target-specific representation than
its input. That is, every lowering trades robustness for thinness. This is intentional:
Compilation is a long and complex process. Breaking it down into multiple, smaller
steps makes it easier to reason about.

3.2.1 Methodology

We have determined what the requirements are for an appropriate abstraction. With
these requirements in mind, we can inspect preexisting abstractions over GC-related
functionality in the Julia compiler. We will do so by evaluating the Julia compiler’s
abstraction layers for GC-related information in reverse order, ignoring the trivial
abstractions of source code and native code.

That is, we will start at the Julia compiler’s final LLVM IR output, which we will
discover to be unsuitable for alternative GC implementations. We will then move

33

3 Garbage collection abstractions for Julia

backward in the Julia compiler’s sequence of abstraction layers until we reach a
point where the GC abstraction is sufficiently robust to support other GCs. Since
every step of the Julia compiler pipeline trades robustness for thinness, the first
sufficiently robust abstraction we find will also be the thinnest one.

We finally evaluate the thinness of that abstraction level, determine that it is
insufficient, and conclude that we need a new abstraction layer.

3.2.2 Last abstraction layer: Runtime library calls

The final abstraction layer for GC-related functionality in the Julia compiler consists
of LLVM IR that makes direct calls to GC functions in the Julia runtime library.
This abstraction—the interface of the Julia runtime library’s GC—is designed
specifically to support Julia’s precise, non-moving, generational GC. The abstraction
is insufficiently robust to be of much use for developing a GPU GC. However, the
patterns of code that appear at this abstraction layer are useful for pointing out the
“gap” between this abstraction and the abstraction that precedes it; we will discuss
the latter in the next section.

We identify 6 distinct patterns of GC-related LLVM IR at this abstraction level.
Four of these patterns are related to root set management, one allocates memory, and
one is related to write barriers in Julia’s GC. We will now discuss the three concepts
with their related patterns in more detail.

Root set management

Julia’s CPU GC is precise. Hence, the LLVM IR generated by the Julia compiler
must somehow include instructions that manage the root set: The set of all local and
global variables that point to garbage-collected objects.

Julia’s GC expects that all root pointers be stored in a linked list of GC frames:
data structures that are essentially variable-length arrays of root pointers. Figure 3.2
visualizes such a linked list of GC frames. Every blank cell represents a root pointer
and every GC frame contains a pointer to the next GC frame. A null pointer indicates
the end of the linked list of GC frames.

Every Julia function that defines at least one variable pointing to a GC-managed
object (1) allocates memory for a GC frame on entry, (2) appends it to the linked list of
GC frames, (3) stores GC roots in the frame whenever necessary and (4) unregisters
the frame when the function finishes execution.

34

3.2 Preexisting abstractions

Figure 3.2: A linked list of GC frames. Blank cells contain pointers to GC-managed objects.

1 mutable struct Vector2

2 x::Float64

3 y::Float64

4 end

5

6 @noinline create_vec(x) = Vector2(x, x)

7

8 function gc_root_management(x)

9 vec = create_vec(x)

10 yield()

11 return vec

12 end

Listing 10: An example Julia function to illustrate GC root management.

When the GC starts a collection, it walks the linked list of GC frames and marks
every root pointer in that list as live. Linked lists of GC frames are a standard
technique in managed language implementations, especially those that target
platforms without support for scanning the stack for root pointers [10, 41].

We will now consider the LLVM IR that implements this root management scheme,
as generated by the Julia compiler. Listing 10 is a small Julia script that is designed
to trigger root set management logic. It defines three top-level entities:

1. A mutable data type called Vector2. Because it is a mutable data type, any
instance of Vector2will become a GC-managed object.

2. A helper functioncreate_vec that creates an instance of aVector2. create_vec
is marked@noinline to simplify the LLVM IR generated forgc_root_management.

3. A function gc_root_management that first calls create_vec, then calls the
yield function, and finally returns create_vec’s result.

By inserting the rather opaque yield function in between the create_vec call
and the return statement, we force gc_root_management to keep create_vec’s
result alive, that is, to store that result in a GC frame.

35

3 Garbage collection abstractions for Julia

Listing 11 is a simplified version of the LLVM IR generated by the Julia compiler
for the gc_root_management function. Of particular interest are the four root set
management patterns. All four show up in the listing:

1. A GC frame pointed to by %gcframe is allocated and zero-filled. The GC frame
is three pointer-sized elements in size to accommodate an integer value that
indicates the size of the GC frame, a pointer to the next GC frame in the linked
list of GC frames, and a single root that will be stored in the GC frame, in that
order.

2. The GC frame is then initialized. This consists of two distinct steps:

a) First, the first element of the GC frame is set to the number of root pointers
in the GC frame plus one. This allows the GC to tell how many root
pointers are stored in the GC frame when it walks the linked list of GC
frames.

b) Next, the GC frame is inserted into the linked list of GC frames. This is
done by storing the head pointer of the linked list of GC frames in the
second field of the GC frame. Said head pointer is then updated to point
to the GC frame. To acquire this head pointer, we consult a thread-local
data structure called the “PTLS states.”

3. The code subsequently calls the create_vec function and stores its result in
the GC frame. This result value will be considered live by the GC as long as it
remains in the GC frame and the GC frame remains registered in the linked
list of GC frames.

After the call to create_vec, we call yield. yield may trigger garbage
collections, but this will not make the GC collect create_vec’s result because
that result will be considered live thanks to its presence in the GC frame.

4. Finally, the GC frame is removed from the linked list of GC frames by undoing
the action performed in item 2.

We observe a number of properties of this final abstraction layer.

1. The code is hardwired to use a linked list of GC frames as opposed to some
other data structure for managing the root set.

2. At this level of abstraction, GC frames are always allocated using an alloca
instruction, that is, they will be placed in the GPU’s stack memory. GPU

36

3.2 Preexisting abstractions

1 define %jl_value_t* @gc_root_management(i64) {

2 top:

3 ; (1) Allocate a GC frame that can store GC-managed objects.

4 %gcframe = alloca %jl_value_t*, i32 3

5 call void @llvm.memset.p0i8.i32(

6 %jl_value_t* %gcframe, i8 0, i32 24, i32 0, i1 false)

7

8 ; (2) Initialize the GC frame.

9 ; (2.a) Set the GC frame's size field.
10 %2 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 0

11 %3 = bitcast %jl_value_t** %2 to i64*

12 store i64 2, i64* %3

13 ; (2.b) Append the GC frame to the linked list of GC frames.

14 %ptls = call %jl_value_t*** @julia.ptls_states()

15 %4 = getelementptr %jl_value_t**, %jl_value_t*** %ptls, i32 0

16 %5 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 1

17 %6 = bitcast %jl_value_t** %5 to %jl_value_t***

18 %7 = load %jl_value_t**, %jl_value_t*** %4

19 store %jl_value_t** %7, %jl_value_t*** %6

20 %8 = bitcast %jl_value_t*** %4 to %jl_value_t***

21 store %jl_value_t** %gcframe, %jl_value_t*** %8

22

23 ; (3) Create a GC-managed object, put its address in the GC frame.

24 %9 = call %jl_value_t* @create_vec(i64 %0)

25 %10 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 2

26 store %jl_value_t* %9, %jl_value_t** %10

27

28 ; Call 'yield'.
29 call void @yield()

30

31 ; (4) Remove the GC frame from the linked list.

32 %12 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 1

33 %13 = load %jl_value_t*, %jl_value_t** %12

34 %14 = getelementptr %jl_value_t**, %jl_value_t*** %ptls, i32 0

35 %15 = bitcast %jl_value_t*** %14 to %jl_value_t**

36 store %jl_value_t* %13, %jl_value_t** %15

37

38 ; Return.

39 ret %jl_value_t* %9

40 }

Listing 11: GC root management at the lowest level of abstraction.

37

3 Garbage collection abstractions for Julia

stack memory is only accessible to the GPU in the CUDA programming
model [57, 66].

Due to technical restrictions that will be explained in more detail in Section 4.2.2,
some degree of CPU participation in collections is a hard requirement if one
wants to obtain a GPU GC that can expand its heap—a desirable feature.

Furthermore, traditional mark-and-sweep collection algorithms correspond to
mostly-sequential pointer-chasing logic with highly irregular memory access
patterns. Such workloads do not play to the strengths of GPUs, but CPUs excel
at them [52, 79].

In summary, some CPU participation in collections is required and CPUs are
more suitable for collection algorithms. It then stands to reason that we use
the CPU for collecting the GPU GC’s heap. However, this is precisely what is
prohibited by storing the root set in GPU stack memory.

3. A pointer into the linked list of GC frames is stored in the “PTLS states” thread-
local data structure, queried by a call to the julia.ptls_states intrinsic:1

%ptls = call %jl value t*** @julia.ptls states().

The PTLS states are an amalgamation of various pieces of thread-local informa-
tion from many different components of the Julia runtime including garbage
collection but also signal handling, IO handling, pseudo-random number
generation and others. This makes PTLS states a highly CPU-specific data
structure and hence no GPU GC should be built on top of it.

At this point, it is fair to conclude that this abstraction is insufficiently robust
to support a GPU GC. However, the abstraction’s underlying concepts are by and
large sufficiently robust. Indeed, the parts of the abstraction that rule out a GPU GC
implementation are—quite frankly—trivial details. If we could somehow tailor the
abstraction to use a different type of memory for GC frames and remove the reliance
on PTLS states, then we would have something that is workable for a GPU GC.

Memory allocation

The fifth pattern we observe is memory allocation. To allocate GC-managed memory,
LLVM IR generated by the Julia compiler will call either the jl_gc_pool_alloc

1In a compiler, an intrinsic (function) is a function whose meaning is intimately understood by
the compiler. Additionally, intrinsic functions are declared but never defined: They are lowered
to something concrete before the end of the compiler’s pipeline. Consequently, the native code
generated by the compiler never calls intrinsics, unlike normal functions.

38

3.2 Preexisting abstractions

function or the jl_gc_big_alloc function, depending on the size of the allocation.
These functions could plausibly be re-implemented by a GPU GC. The only wrinkle is
that both functions take a pointer to PTLS states as an argument, but this dependency
could reasonably be removed by a cleanup pass.

Write barriers

The Julia compiler places write barriers right after writes that store an object reference
in a field of some other object. This gives rise to the sixth pattern: A write barrier
implemented by a call to the jl_gc_queue_root function from the Julia runtime
library. This is not a real blocker for implementing a GPU GC: Write barriers can
be elided for non-generational GCs and generational GCs can simply provide their
own implementation of jl_gc_queue_root.

Conclusion

We conclude that the final abstraction layer offered by the Julia compiler is almost
sufficiently robust to support a GPU GC. Two aspects that block a GPU GC im-
plementation are (1) insufficient control over how GC frames are allocated and
managed, and (2) pointers to PTLS states being passed around.

3.2.3 Penultimate abstraction layer: Address spaces and intrinsics

Since the last abstraction layer is not quite robust enough for our purposes, it is
only logical for us to move on to the next-to-last one. Neither the penultimate nor
the ultimate abstraction layer in the Julia compiler has a standard name, but the
transformation that turns the former into the latter is called “late GC frame lowering.”
We will therefore henceforth refer to the next-to-last abstraction layer as “before GC
frame lowering” and the final abstraction layer as “after GC frame lowering.”

Whereas LLVM IR after GC frame lowering is characterized by its hardwired
GC frame management scheme and its reliance on runtime library calls, LLVM IR
before GC frame lowering operates at a high level of abstraction. Specifically, there
is no explicit GC frame management to speak of. Instead, the pointers that are to be
included in a function’s GC frame are given a special pointer address space. A pointer
address space in LLVM is an integer value that is included in the type of a pointer.
The semantics of a pointer address spaces are entirely target-specific [53].

Listing 12 corresponds to Listing 11 prior to GC frame lowering. It succinctly
captures the gist of Listing 10 without the low-level implementation details of

39

3 Garbage collection abstractions for Julia

1 define %jl_value_t addrspace(10)* @gc_root_management(i64) {

2 top:

3 %1 = call %jl_value_t addrspace(10)* @create_vec(i64 %0)

4 call void @yield()

5 ret %jl_value_t addrspace(10)* %1

6 }

Listing 12: GC root management before GC frame lowering.

Listing 11. First, Listing 12 calls create_vec, then yield is called and finally
create_vec’s result is returned.

To distinguish between pointers to GC-managed objects and pointers to other
data, the Julia compiler tags all instances of the former with address space 10. These
address space annotations are encoded as addrspace(10) in the LLVM IR from
Listing 12.

This abstraction allows us to distinguish between different pointer types and treat
them accordingly, but does not commit itself to any particular root set management
technique one way or the other; it is quite robust in that sense.

Object allocation and write barriers are handled by dedicated intrinsic func-
tions at this layer of abstraction: julia.gc_alloc_obj and julia.write_barrier,
respectively.

Appropriateness

The abstraction presented by LLVM IR prior to GC frame lowering is more than
robust enough to allow for a GPU GC to be implemented on top of it.

However, there is quite a large gap in terms of abstraction that is monolithically
closed by the GC frame lowering pass. To close this gap efficiently, the GC frame
lowering pass performs a complicated analysis that determines when, if ever, to
store GC roots in a GC frame. To reduce stack memory consumption, it also tries to
reuse GC frame slots by using a graph coloring algorithm [32].

If we were to try and lower this abstraction to GC frame managing code for a
GPU GC directly, then we would essentially have to replicate the GC frame lowering
algorithm or settle for a simpler but less effective ersatz algorithm. Neither option is
very appealing.

In conclusion: The abstraction prior to GC frame lowering is sufficiently robust
for our purposes. But it is not thin enough.

40

3.3 Low-level GC intrinsics

3.3 Low-level GC intrinsics

As it turns out, GC frame lowering seems to be a major tipping point in terms of
GC-related abstractions: The abstraction that precedes it is quite robust but not very
thin; the abstraction that succeeds it is not robust enough.

This observation gives rise to this thesis’ first contribution: An additional layer
of abstraction inside the Julia compiler that is wafer-thin and just robust enough
to support the existing precise, non-moving, generational GC as well as GCs that
require less compiler support. The abstraction arises naturally by refactoring the GC
frame lowering pass into two passes:

1. A mostly GC-agnostic GC frame lowering pass that produces optimized yet
abstract instructions for GC frame management in the form of intrinsics.

2. A GC-specific lowering pass that replaces these intrinsics with concrete imple-
mentations that are appropriate for Julia’s CPU GC.

Crucially, virtually all of the complexity of the GC frame lowering pass is moved
into the GC-agnostic pass—the GC-specific lowering is entirely formulaic. This makes
the GC-specific lowering’s implementation practically trivial. Hence, implementing
a different lowering for another GC is easy in this scheme.

Figure 3.3 illustrates the compilation pipeline that corresponds to the lowering
scheme we are introducing. It is satisfyingly similar to the modified compilation
pipeline we envisioned as the first major goal of this thesis in Section 2.3.5.

3.3.1 Abstraction

We hinted in the previous section that the abstraction produced by the GC-agnostic
lowering is intrinsics-based. We will now discuss the details of the abstraction: The
intrinsics and their meanings.

The abstraction introduces 6 new intrinsics, each of which corresponds exactly to
one of the patterns of code as discussed in Section 3.2.2. Like those patterns, we bin
the intrinsics into three distinct categories based on the functionality they provide:
Root set management, memory allocation, and write barriers.

Root set management

We introduce four intrinsics that capture the essence of GC frame management. The
GC-specific lowering expands each of these intrinsics to its corresponding pattern.

41

3 Garbage collection abstractions for Julia

LLVM
IRgen

GC-
agnostic
lowering

Targeting
GPU?

CPU GC
lowering CPU

CPU GC

GPU GC
lowering GPU

GPU GC

No

Yes

Figure 3.3: Modified GC lowering scheme. The “GPU GC lowering” and “GPU” blocks refer
to CUDAnative compiler infrastructure and its targeted hardware, respectively.

1. julia.new_gc_frame(n) allocates a new GC frame that can accommodate at
least n GC roots. It returns a pointer to that frame.

2. julia.push_gc_frame(gcframe, n) takes a GC frame and registers it with the
GC. The size of that GC frame is also provided for the GC-specific lowering’s
convenience; the lowering can effortlessly discard it if it is not needed.

3. julia.get_gc_frame_slot(gcframe, i) accepts a pointer to a GC frame and
produces a pointer to the ith root pointer in that GC frame.

4. julia.pop_gc_frame(gcframe) unregisters a GC frame, removing its contri-
bution to the root set.

Listing 13 demonstrates what these intrinsics look like in practice when applied
to our running example. The robustness of the abstraction becomes apparent by
comparing Listing 13 to Listing 11: The low-level patterns we identified in section
Section 3.2.2 are all abstracted over and generalized by replacing them with intrinsics.

The thinness of the new abstraction can be observed by taking Listing 12 into
consideration as well. Indeed, while sufficiently general to support alternative GC

42

3.3 Low-level GC intrinsics

1 define %jl_value_t* @gc_root_management(i64) {

2 top:

3 ; (1) Allocate a new GC frame big enough for one root.

4 %gcframe = call %jl_value_t** @julia.new_gc_frame(i32 1)

5

6 ; (2) Register it with the GC.

7 call void @julia.push_gc_frame(%jl_value_t** %gcframe, i32 1)

8

9 ; (3) Create a Vector2 instance and add it to the GC frame.

10 %1 = call %jl_value_t* @create_vec(i64 %0)

11 %2 = call %jl_value_t** @julia.get_gc_frame_slot(

12 %jl_value_t** %gcframe, i32 1)

13 store %jl_value_t* %1, %jl_value_t** %2

14

15 ; Call 'yield'.
16 call void @yield()

17

18 ; (4) Unregister the GC frame.

19 call void @julia.pop_gc_frame(%jl_value_t** %gcframe)

20 ret void

21 }

Listing 13: GC root management after GC-agnostic GC frame lowering.

implementations, the intrinsics in our new abstraction can be expanded formulaically.
The address space–based abstraction from Section 3.2.3, on the other hand, depends
on complex algorithms for an efficient lowering.

Memory allocation

When targeting Julia’s CPU GC, the Julia compiler emits a call to an allocation
function. The exact allocation function depends on the size of the object to allocate:
jl_gc_pool_alloc is used for small objects and jl_gc_big_alloc for large ones.
That is not necessarily something every GC wants to do.

Accordingly, we abstract over the exact allocation function by introducing a fifth
intrinsic: julia.gc_alloc_bytes(ptls, n). It allocates n bytes of storage, plus
sufficient headroom for an object type tag.2 As a historical concession, it also takes a
pointer to PTLS states.

2The Julia compiler marks all GC-managed objects with a tag that identifies the object’s type.

43

3 Garbage collection abstractions for Julia

This approach differs from the one taken by the root set management intrinsics,
which do not require a pointer to the PTLS states as a parameter. We believe the root
set management intrinsics’ design to be superior to julia.gc_alloc_bytes, as PTLS
states are a highly CPU-specific and implementation-specific construct whereas the
intrinsics introduced for this abstraction layer are designed to be platform-agnostic.
However, the preexisting julia.gc_alloc_obj intrinsic from Section 3.2.3 already
takes a pointer to the PTLS states. It would be silly to discard the PTLS states pointer
argument when lowering julia.gc_alloc_obj to julia.gc_alloc_bytes only to
recover it when julia.gc_alloc_bytes is in turn lowered to a call to an allocation
function.

That being said, a pointer to the PTLS states can be trivially discarded when
lowering the intrinsic, so it does not impose a real burden on lowerings that do not
or cannot rely on PTLS states.

Write barriers

Similarly, we define a sixth intrinsic, julia.queue_gc_root(root), that marks an
object as being pointed to from another object that may not be in the same generation.
The CPU GC targeting lowering expands this intrinsic to a call to jl_gc_queue_root,
which essentially has the same semantics.

3.3.2 Implementation

We implemented the contributions described thus far in a fork of the Julia compiler.3

Concretely, we first refactored the old GC frame lowering pass, LateLowerGCFrame,
by introducing a helper class JuliaPassContext that deduplicates the repetitive
pattern of finding and/or defining intrinsics and well-known functions.4

After that, we incrementally extracted all CPU GC-specific logic from pass
LateLowerGCFrame and placed them in a separate pass: FinalLowerGC. Both passes
rely on JuliaPassContext to juggle the intrinsics and well-known functions the
passes accept and emit. We finally expanded the Julia compiler’s test suite to test
LateLowerGCFrame and FinalLowerGC passes in isolation.

Our contributions are designed to be suitable for inclusion in the upstream Julia
project. To that end, we sent a pull request to the upstream Julia repository, which

3See https://github.com/jonathanvdc/julia/tree/staged-gc-lowering for the exact changes.
4A well-known function is a real function that the compiler knows intimately. Unlike intrinsics,

well-known functions are backed by definitions.

44

https://github.com/jonathanvdc/julia/tree/staged-gc-lowering

3.3 Low-level GC intrinsics

has since been reviewed, approved and, merged in.5 In total, our pull request
consisted of 988 additional lines of code and 273 removed lines.

5See https://github.com/JuliaLang/julia/pull/31135 for the pull request.

45

https://github.com/JuliaLang/julia/pull/31135

4 A garbage collector for

CUDAnative

The abstractions introduced in the previous chapter are a means to an end: To
implement alternative garbage collectors. This chapter discusses two GPU memory
management schemes built on those abstractions: A trivial memory management
scheme and a general-purpose GC. The trivial memory management scheme is
compatible with any memory allocator, including CUDA malloc and a bump
allocator that we implement ourselves. Like most GCs, our GC needs fine-grained
control over allocation and hence uses a custom-designed allocator.

4.1 Trivial memory management

To demonstrate the robustness of the abstraction layer introduced at the end of the
previous chapter and enable limited dynamic memory allocation for GPU kernels,
we first implement a trivial memory management scheme: One that allocates objects
but never bothers to free them.

Trivial memory management does not impose any requirements on the allocator
other than the basic requirement of reserving a slice of memory. Because of this,
the trivial memory management scheme is completely independent of the allocator
in use: It is entirely compatible with existing, non-GC memory allocators. This is
not the case for more advanced memory management schemes, which continue
to manage memory after it is allocated, imposing additional requirements on the
allocator.

In the context of GPU programming, trivial memory management is actually not
such a radical idea. Indeed, to the best of our knowledge, there are no managed
language implementations that target GPUs and use a full-fledged GC. At the time
of writing, the only known GPU-targeting managed language implementation that
supports transparent dynamic allocation other than CUDAnative is Rootbeer, a
Java-to-CUDA compiler [62]. Rootbeer uses trivial memory management.

47

4 A garbage collector for CUDAnative

Furthermore, typical GPU kernels are short-lived and rarely rely on dynamic
memory allocation. In using a trivial memory management scheme, we obviate the
need for setting up a GC heap while providing support for crucial language features
such as exception handling.

Exception handling is used to handle exceptional conditions, but such conditions
rarely occur in production code. Disallowing language features outright means
that many kernels fail to compile, even if these features’ implementations would
otherwise never be executed at run time. Trivial memory management offers an
alternative in this case.

The trivial memory management scheme is also a useful yardstick for measuring
the overhead of an actual GPU GC, allowing us to quantify whether using a GC on a
GPU is sensible or not from a performance perspective by comparing it to non-GC
allocators.

4.1.1 GC intrinsic lowering

We demonstrate that trivial memory management can readily be implemented based
on the GC intrinsics introduced at the end of the previous chapter by expanding
those intrinsics using a set of straightforward rules.

1. GC frames are lowered as stack-allocated arrays of pointers. Intrinsics that
register and unregister GC frames are simply deleted.

2. The julia.gc_alloc_bytes intrinsic is replaced by a call to an allocation
function. By default, this is the CUDA memory allocation function: malloc.
Kernel invocations are free to specify an alternative allocation function if they
so choose.

3. All calls to the julia.queue_gc_root intrinsic are deleted.

This lowering replaces the proof-of-concept implementation of trivial memory
management in CUDAnative mentioned in Section 2.3.4. Said previous implementa-
tion was built on the address space–based abstraction from Section 3.2.3. The new
lowering instead departs from the abstraction level defined in Section 3.3.

Trivial memory management nets us a fully functional implementation, ushering
in a host of Julia features that would ordinarily require intervention from the GC for
CPU platforms. The only downside is that memory runs out after a while if dynamic
memory allocation is used liberally.

48

4.1 Trivial memory management

4.1.2 A bump allocator

Kernels that complete quickly are unlikely to exhaust the pool of available GPU
memory, even if they allocate liberally. However, memory allocated by CUDA
malloc outlives the kernel that allocated it. Since trivial memory management
never frees memory, this implies that repeatedly launching kernels from the same
process will cause GPU memory to run out for that process if those kernels use
trivial memory management and CUDA malloc.

Additionally, CUDA malloc appears to be quite slow in practice, as we will
observe in Chapter 5.

To address these two issues, we implement a bump allocator for GPU kernels that
serves as an alternative to CUDA mallocwithin the framework of trivial memory
management. The allocator gives rise to the following workflow:

1. Before launching a kernel, the CPU allocates a pool of GPU memory, unified
memory, or pinned memory.

2. When the kernel is launched, a pointer to the start and end of said pool is
passed to the kernel.

3. The kernel runs. When a GPU thread needs to allocate memory, it does so by
atomically incrementing a pointer.

4. The kernel finishes and the CPU deallocates the entire memory pool.

The bump allocator integrates well with our trivial memory management scheme,
which is designed to accommodate any allocation function. Hence, calls to the
bump allocator are injected into functions using the same mechanism as for CUDA
malloc. That is, allocations are automatically lowered to call the bump allocation
function rather than CUDA malloc. Kernels do not have be modified to use the
bump allocator; the code that launches the kernel merely has to specify that it wishes
to use a bump allocator.

The bump allocator has two major benefits over CUDA malloc. First and foremost,
it ensures that memory leaks do not outlive kernel launches. Second, we expect
a bump allocator to represent a lower bound on allocation latency. Allocating an
object using a bump allocator consists of atomically incrementing a pointer and little
else. It is difficult to imagine a functioning allocator that does even less work. This
sentiment is confirmed in Chapter 5, which shows the bump allocator to be very fast
indeed.

49

4 A garbage collector for CUDAnative

4.2 A garbage collector for GPU memory

The trivial memory management scheme discussed in the previous section is
acceptable for low-level GPU kernels that rarely allocate GC-managed objects.
However, as outlined in Section 2.3.3, code reuse and compositional schemes can
give rise to kernels that do not restrict themselves to the low-level programming
paradigm for which a trivial memory management scheme is useful.

This motivates the emergence of a memory management scheme that does not
leak memory, a GC for objects allocated on the GPU.

4.2.1 Related work

Our case for a GPU GC is a natural consequence of the fact that we mean to support
high-level programming on GPUs. That notwithstanding, the concept of a GC for a
programming language that compiles to GPUs is actually quite novel. Indeed, as
previously stated, we know of no GPU programming language implementations
that use a GC in a transparent way, as one might expect for a managed language
that runs on a CPU.

The idea of a GC for GPU kernels is not entirely unprecedented: Veldema and
Philippsen implemented a mark and sweep garbage collector for GPUs [76]. Their
GC both allocates and collects memory on the GPU, but garbage collection is not
transparent in their implementation: When their GC runs out of memory, it returns a
null pointer. The GPU kernel programmer has to check for null pointers after every
allocation and decide how to handle them. Veldema and Philippsen recommend
that programmers handle these null pointers by introducing logic that terminates
the kernel, triggers a collection and then restarts the kernel.

We argue that Veldema and Philippsen’s approach, while novel, is invasive even
for relatively simple kernels. Indeed, it requires that every allocation is rewritten
from the ground up, precluding reuse of code that was originally written for CPU
execution such as Julia’s standard library. Furthermore, aborting kernels is easy, but
writing code that restores a kernel’s state exactly is delicate and labor-intensive.

Maas et al. [54] as well as Abhinav and Nasre [2] have proposed modified versions
of Veldema and Philippsen’s collector. Their collectors are designed to offload
garbage collection of CPU memory to the GPU in order to reduce garbage collection
times. Their work is innovative, but it does not address the issue of transparent
garbage collection for GPU kernels.

50

4.2 A garbage collector for GPU memory

4.2.2 High-level design

The lack of a cut-and-dried solution to the problem of transparent garbage collection
for GPU kernels prompted us to design a solution from the ground up. Since
this brings us into uncharted territory and the novelty of our solution lies in the
problem it solves rather than how it solves that problem, we decided on a design
carefully constructed to maximize the odds of success in a functional sense. The
non-functional aspects of the implementation of course cannot be neglected—a
common theme in system software—but we envisage our GC as more of proof of
concept that might well serve as a starting point for future innovation in this area of
research than the ne plus ultra of GPU garbage collection.

For this reason, we implemented a free list based allocator and a straightforward
conservative, non-moving mark and sweep collection algorithm.

More prominently, we decided on a design wherein allocations are performed
directly by the GPU and collections are performed by the CPU. This may be slightly
controversial: As evidenced by Veldema and Philippsen’s work, it is not strictly
necessary to refer collections back to the CPU. Indeed, it is not inconceivable that
the GPU might be instructed to reuse its already-running threads for the purpose of
collecting garbage.

We base our decision to move collections to the CPU in their entirety on the
following points, which are in line with our earlier reasoning in Section 3.2.2:

• The CPU can allocate additional memory at will and share it with the GPU
using the cudaHostAlloc function of the CUDA Application Programming
Interface (API) [57]. To the best of our knowledge, GPUs cannot do the
same: They are assigned a fixed-size, usually tiny heap for dynamic memory
allocations. Once the heap runs out, CUDA malloc returns null pointers.

We consider the ability to expand the GC heap to be a crucial feature of any
GC. For this reason, we foresee that the GC will have to fall back to the CPU
whenever the GC heap proves insufficiently large after a collection, regardless
of which device performs the collection. Hence, the GC needs some mechanism
for faulting back to the CPU either way; on-GPU collections will not rescue us
from having to implement one.

• Veldema and Philippsen report that by using 256 GPU threads for collections
they can achieve a speedup of up to 11× compared to using just one GPU
thread for collections [76]. However, Veldema and Philippsen do not compare

51

4 A garbage collector for CUDAnative

their GC to a CPU GC, even though CPUs are known to excel at workloads that
feature non-streaming memory accesses and synchronized access to resources,
typical properties of mark-and-sweep GCs that use free lists such as Veldema
and Philippsen’s [52, 60]. One might reasonably expect a CPU GC to offer a
speedup equal to or even in excess of the 11× speedup compared to a single
GPU thread. Indeed, Maas et al.’s work shows that their reference CPU GC
outperforms their GPU GC on almost every benchmark [54]. Only Abhinav
and Nasre report that their implementation outperforms the reference GC,
with an average performance improvement of 10% [2].

• Veldema and Philippsen’s collection algorithm is fairly complex and consists of
many different kernel launches and synchronization steps, all of them driven
by the CPU. We estimate that it would take significant effort to rework their
algorithm as a GPU-only algorithm.

Implementing a simple CPU mark-and-sweep algorithm, on the other hand, is
certainly less risky and we expect it to at least be competitive with a GPU-only
algorithm, as per the previous point.

Moreover, a straightforward collection algorithm is fully in line with our design
methodology for the GC: Our primary mission is to focus on functional aspects
rather than on convoluted optimizations.

We anticipate one notable non-functional downside to having the CPU perform
collections for the GPU GC: Memory has to be copied back and forth between
the CPU and the GPU when collections occur. To this end, we will examine the
additional overhead imposed by collections in Chapter 5.

While the CPU is responsible for performing our GC’s collections, the GPU is
responsible for triggering those collections: When the GPU runs out of memory,
it notifies the CPU that a collection is due, waits for the CPU to finish collecting
garbage and resumes. We call this general scheme, where the GPU requests that the
CPU performs some action, a GPU interrupt.

4.2.3 GPU interrupts

In the literature, we discern two mechanisms that fit our definition of an interrupt:
GPU-to-CPU callbacks [71] and GPU system calls [78]. Both essentially achieve
the same result, with the former being more reliant on software and the latter on
hardware.

52

4.2 A garbage collector for GPU memory

• GPU-to-CPU callbacks are interrupts that are defined purely in software: A
GPU thread sets an interrupt flag and waits until the CPU gives the GPU an
all-clear signal. Similarly, the CPU waits for the GPU to set the interrupt flag
and then runs its interrupt logic before giving the all-clear signal.

• GPU system calls instead rely on hardware support to send a signal from a
GPU thread to the CPU and vice-versa, requiring no busy waiting from either
device. This is an intuitively more attractive solution, but research into this
approach has thus far focused on AMD GPUs rather than NVIDIA GPUs and
required modifications to the hardware drivers [78]. This latter requirement
is problematic considering that NVIDIA’s drivers are closed source, unlike
AMD’s.

The key to re-implementing GPU system calls for NVIDIA devices seems
to have eluded us so far. We believe that the most promising approach to
implementing system calls is by hijacking the brkpt breakpoint instruction
defined by the PTX ISA using the CUDA Debugger API. This is also the
approach taken by the researchers who implemented GPU system calls for
AMD GPUs, as we learned from private correspondence with one of the
authors.

However, for unknown reasons, the CUDA Debugger API did not work
when we tried to use it, freezing the main thread when the CUDA Debugger
API was instructed to launch a kernel from the same process that runs the
CUDA Debugger API. This appears to be a known deficiency with the CUDA
Debugger API, but we are not aware of any workarounds [72].

A high-level interrupt API

To sidestep current issues in implementing GPU system calls for NVIDIA devices
without ruling out the possibility of a future system calls–based interrupt implemen-
tation, we introduce an abstraction over the concept of an interrupt and implement
it for now using GPU-to-CPU callbacks.

Specifically, we associate a single interrupt handler with every kernel launch. The
interrupt handler is executed exactly once per interrupt. We also define the following
high-level GPU-facing API for interrupts:

1. interrupt_or_wait()::Bool requests an interrupt and waits until the in-
terrupt completes. At most one interrupt may be active at any time per

53

4 A garbage collector for CUDAnative

launched kernel. If an interrupt is already running, then this function waits
for that interrupt to complete but does not request an interrupt of its own.
interrupt_or_wait returns true if an interrupt was successfully requested
by this function; otherwise, false.

2. wait_for_interrupt()waits for the current interrupt to finish, if an interrupt
is currently pending or running.

3. wait_for_interrupt(fun::Function)waits for the current interrupt to finish,
if an interrupt is currently pending or running. fun is repeatedly executed
until the interrupt finishes.

4. interrupt() repeatedly requests an interrupt until one is requested success-
fully.

This API represents a versatile mechanism that can be used to implement both non-
idempotent interrupts like incrementing a counter and idempotent interrupts such as
triggering a collection. We will focus on the latter use case. The literature discusses
alternative use cases, including disk I/O, network I/O, and debugging [71, 78].

4.2.4 Collection

Collections are triggered by a GPU thread when it runs out of memory to allocate.
To trigger a collection, the thread calls interrupt_or_wait(), which will either wait
for the active collection to finish or start a brand new one.

Safepoints

It is of paramount importance that all GPU threads are paused during garbage
collection. If they are not, then they might modify the object graph in unpredictable
ways. Moreover, the GC frame lowering pass only guarantees that all live objects are
reachable in the object graph when all threads are in a select set of positions in the
program, the safepoints from Section 2.4.1. The GC frame lowering pass assumes
that only function calls are safepoints, at the caller side. The state of the root set is
undefined at all other points in the program.

To ensure that all GPU threads are in a safepoint for the entire duration of a
collection, we assign a safepoint state to every warp. There are three legal values
a safepoint state can have: (1) “not in safepoint”, (2) “in safepoint” and (3) “in
perma-safepoint”.

54

4.2 A garbage collector for GPU memory

1 function gc_safepoint()

2 wait_for_interrupt() do

3 gc_set_safepoint_flag(in_safepoint; overwrite = false)

4 end

5 return

6 end

Listing 14: Safepoint polling function implementation.

When the interrupt handler fires on the CPU in response to a collection request
from the GPU, it will first set every warp’s state to “not in safepoint” unless that
warp is in a perma-safepoint.

Once the interrupt handler notices that all warps are in either the “in safepoint” or
“in perma-safepoint” state, the interrupt handle will proceed by starting the actual
garbage collection algorithm.

The “not in safepoint” and “in safepoint” states are commonplace in GCs for multi-
threaded programs [9]. A perma-safepoint is a bit of an oddity. The perma-safepoint
state differs from the normal safepoint state in that the collector will not wait for
warps that are in the perma-safepoint state. The collector will wait for warps in the
“not in safepoint” or “in safepoint” states to reach a safepoint polling function.

Perma-safepoints are useful for situations where we know that a warp cannot
reach a safepoint. Currently, perma-safepoints are used for two purposes:

• Warps that have finished executing a kernel put themselves in the perma-
safepoint state just before they finish. Such warps can no longer change the
root set or the object graph, nor can they reach a normal safepoint. Hence, a
perma-safepoint is the only “right” state for such warps.

• Warps that request a collection also place themselves in the perma-safepoint
state prior to requesting the collection.

When a GPU thread enters a normal safepoint, it will execute a compiler-injected
call to the safepoint polling function. Listing 14 contains the verbatim implementation
of the safepoint polling function. Said function waits for the current collection, if any,
to complete and repeatedly sets the warp’s safepoint state to “in safepoint” until the
collection completes.

55

4 A garbage collector for CUDAnative

Collection algorithm

The GC’s collection algorithm consist of four distinct phases.

1. Mark: the GC traverses the entire object graph, starting at the roots. During
this traversal, it marks all reachable objects as live.

During the marking process, roots are identified precisely but object references
in object fields are approximated conservatively by scanning live objects for
aligned, pointer-sized slices of data that point into GC-managed objects.

We had initially hoped to implement a fully precise collector, but quickly
learned that doing so would be infeasible within the scope of this work. The
Julia compiler emits type metadata that any GC should be able to inspect
in order to precisely find object references, but an alternative precise GC
implementation is hampered by the diversity and complexity of this type
metadata. In the Julia compiler, the type metadata gives rise to a 565-line
marking function that manages a custom stack and relies on computed goto
statements [37] as the primary means for control flow.1 The format of this
metadata is both delicate to parse and an implementation detail subject to
change without notice.

Ideally, we would refactor the CPU GC’s marking logic to depend on a helper
function that accepts type metadata and produces a description of all object
references in an instance of such a type. This helper function could then be
exported for use by alternative GC implementations. However, this would be
a large change to which the Julia community might not be receptive and it is
not clear at this time what the impact of such an abstraction would be on GC
pause times. We can only assume that the marking function’s current shape is
due to it being designed and optimized specifically to minimize pause times.

2. Sweep: the GC iterates through all allocated objects that are not live and
deallocates them.

3. Defragment: the GC iteratively merges adjacent free list entries to combat
memory fragmentation.

4. Expand: if the GC determines that the amount of free memory is insufficiently
large, then it will allocate a new chunk of pinned memory and turn it into

1See the gc_mark_loop function defined in https://github.com/JuliaLang/julia/blob/

dea494038df310f8e19de740d9a16b764210f9c3/src/gc.c.

56

https://github.com/JuliaLang/julia/blob/dea494038df310f8e19de740d9a16b764210f9c3/src/gc.c
https://github.com/JuliaLang/julia/blob/dea494038df310f8e19de740d9a16b764210f9c3/src/gc.c

4.2 A garbage collector for GPU memory

a free list entry. This step allows the GC to accommodate memory-hungry
applications with ease without introducing an exorbitantly large initial GC
heap size.

After collecting garbage, the interrupt handler terminates and GPU threads are
free to resume execution.

4.2.5 Choice of memory type

One aspect of the GC that we have thus far not discussed in detail is the type of
memory it uses. This would be a moot point for a CPU GC, but GPUs offer a variety
of different memory kinds.

We consider three types of GPU memory:

1. Device memory. Under normal circumstances, device memory would be the
straightforward choice for our GPU GC’s heap. But as it turns out, we cannot
use device memory for this purpose.

Device memory needs to be copied explicitly between the CPU and the GPU. If
we were to use device memory for the heap, then our GC’s mark phase would
have to copy every live GC-managed object from the GPU and inspect it for
references to other objects.

This is not a problem in and of itself. Rather, the semantics of the copy functions
are an issue for our GC: Memory copies can at best be coaxed into running
concurrently with the GC-enabled kernel, but they cannot be forced to run in
parallel with said kernel.

In practice, our experiments indicate that the GPU’s scheduler may schedule
crucial memory copies for execution after the kernel completes. This causes a
deadlock: The kernel cannot resume execution until the GC-related memory
copy completes and the GC-related memory copy will not even be started until
the kernel terminates.

2. Unified memory. Unified memory is next in line to become our preferred type
of memory for the GPU GC’s heap. Since unified memory pages migrate to
the device that is currently using them, we would expect a GC heap based
on unified memory to be approximately as efficient as one based on device
memory.

Misfortune strikes again. Accessing a unified memory page from a CPU
generates a segmentation fault if that page has been touched by a still-active

57

4 A garbage collector for CUDAnative

kernel running on a pre–Pascal microarchitecture GPU [40]. This is precisely
what happened when we initially experimented with a unified memory GC
heap: The GPU would allocate and populate an object in unified memory,
after which the CPU would try to inspect it during a collection, triggering a
segmentation fault.

Pascal is a fairly recent microarchitecture: the first Pascal hardware premiered
in 2016. Consequently, we cannot reasonably expect all CUDAnative users to
have a Pascal or post-Pascal GPU, ruling out unified memory as a substrate
for our GPU GC.

3. Pinned memory. By exclusion, we arrive at pinned memory as a means for
implementing the GPU GC. Pinned memory can be manipulated directly by
both the CPU and the GPU, which is highly convenient for collections in
general and the mark phase in particular. Most importantly, pinned memory
does not suffer from the show-stopping limitations of device memory and
unified memory.

Our GPU GC implementation uses pinned memory for all of the data it manages,
that is, both the GC’s auxiliary data structures and the GC heap. Additionally, we
designed the GPU GC so that it will be trivial to migrate to unified memory in the
future, when post-Pascal has become the norm.

4.2.6 Root set management

Our use of pinned memory has a profound impact on the root set management
scheme. Since GPUs cannot allocate pinned memory, we have the CPU set aside a
fixed-size pinned memory buffer for every GPU thread. This buffer is used to store
root pointers and is used like a stack, managed using a top-of-stack pointer. The
four GC frame management intrinsics we introduced in the previous chapter are
lowered as follows:

1. julia.new_gc_frame(n) returns the root buffer’s top-of-stack pointer.

2. julia.push_gc_frame(gcframe, n) increments the top-of-stack pointer by n
pointers.

3. julia.get_gc_frame_slot(gcframe, i) indexes gcframe at index i.

4. julia.pop_gc_frame(gcframe) sets the top-of-stack pointer togcframe, restor-
ing it to the state it was in when julia.new_gc_framewas called.

58

4.2 A garbage collector for GPU memory

In this scheme, root buffers can overflow. The same limitation affects the CPU GC:
Allocating too many GC frames will make the stack overflow. Root buffer overflows
are rare in practice both for the CPU GC and the GPU GC because stack sizes and
root buffer sizes are chosen to be reasonably large.

When a root buffer does overflow, a check in the GPU GC implementation of
julia.push_gc_frame detects this overflow and prints a message indicating that an
overflow occurred, along with the index of the thread that caused the overflow.

4.2.7 Allocation

In its most basic mode of operation, the GC’s allocator manages a single free list.
To give the GC an overview of all allocated chunks of memory, the GC’s allocator
also manages an allocation list: an analogous list of all allocated chunks of memory.
Whenever a new object is allocated, the chunk of memory allocated to that object is
moved from the free list to the allocation list.

All free list modifications are performed atomically to fend off race conditions. To
guarantee atomicity, we equip the free list with a global mutual exclusion lock and
acquire said lock whenever we want to allocate memory.

Arenas

The basic allocation scheme described thus far is perfectly functional, even on a GPU.
However, it serializes memory allocations, which would be undesirable even for
CPUs and doubly so for massively parallel GPUs.

To combat this phenomenon, we will introduce multiple arenas. We define an
arena as a possibly non-contiguous region of memory managed by an allocator that
is fully independent from the other allocators. Hence, an allocator will only make
threads contend for lock acquisitions or other resources within the confines of a
single arena.

Our reason for introducing the notion of an arena is that arenas are composable:
We can use multiple arenas to build a composite arena. We propose two ways to
compose arenas.

1. In parallel: to reduce contention, we can take a sequence of arenas and assign
each arena to a group of threads. Since contention is by definition an intra-
arena phenomenon, two groups of threads can allocate memory in a fully
independent fashion from their respective arenas, boosting parallelism.

59

4 A garbage collector for CUDAnative

Parallel

Arena 1 Arena 2 Arena 3 Arena 4

Shared arena

Free memory

Figure 4.1: Composed arena allocator.

2. Hierarchically: a hierarchy of arenas is readily established by trying to allocate
from one arena first and moving on to the next arena if the first arena cannot
satisfy the request.

We also note that, in a hierarchical composition scheme, compatible arenas can
“steal” resources from each other. For example, a free list entry can painlessly be
removed from one free list and added to another.

Taking this into account, we now equip the GPU GC with an arena that includes two
layers of arena composition, as in Figure 4.1. The outer composition is hierarchical,
with the first layer in the hierarchy being a number of parallelly composed free lists
and the second layer being a single, shared free list. The latter is granted generous
amounts of memory, but incurs more contention. The parallel free lists are each
assigned a modest amount of memory. When one of the parallel free lists runs out
of memory, it tries to steal a large chunk of memory from the shared free list. This
large chunk can then be subdivided into many small chunks by the parallel free list
without the contention overhead of the shared list.

4.3 Limitations

Before concluding this section, we identify two main limitations in our GPU GC:
concurrent kernel launches and dynamic parallelism.

4.3.1 Concurrent kernel launches

The CUDA programming model allows for kernels to be launched in such a way
that the kernels can run concurrently. CUDAnative also exposes this functionality.

Our GC’s core design is well-suited to accommodate multiple kernel launches
as all GC state is local to a kernel launch. However, our polling-based interrupt
implementation blocks the CPU thread that launches a kernel. This would not be

60

4.3 Limitations

an issue in most contemporary programming languages: Launching a separate,
lightweight thread for polling the GPU and handling interrupts would allow the
main thread to continue executing and launch concurrent kernels.

However, Julia does not support launching new threads. Adding this functionality
to the Julia compiler itself would also be a rather large endeavor, as going from a
single-threaded to a multi-threaded execution model requires non-obvious changes
to core language implementation components. For example, the Julia compiler
would have to be taught to inject calls to safepoint polling functions.

The easiest solutions to the problem of concurrent kernel launches would be to
wait for Julia to gain full-fledged threading support.

Alternatively, we could re-implement interrupt handling and garbage collection
logic in a language that does support multi-threading. Doing so would significantly
complicate CUDAnative’s architecture, so this option is not our preferred outcome.

Finally, a more elegant option would consist of implementing non-blocking
interrupts for CUDAnative. However, it is unclear to us how that can be done; our
efforts to implement GPU system calls for CUDAnative have failed so far.

4.3.2 Dynamic parallelism

Dynamic parallelism refers to the practice of launching new CUDA kernels from
already-running CUDA kernels on the GPU [3, 4]. Dynamic parallelism has been
part of the CUDA API since CUDA 5.0 and CUDAnative has recently gained support
for dynamic parallelism as well [12].

The GC’s design and implementation predates the addition of dynamic parallelism
to CUDAnative. Hence, the GC was not designed with dynamic parallelism in mind.
Two aspects of the GC’s design are incompatible with dynamic parallelism:

1. A fixed-size array of safepoint states is allocated to every warp before a kernel
starts. A dynamic kernel launch produces additional warps that need to be
managed by the GC, but the safepoint array cannot be extended because its
size is fixed when the original kernel is launched.

2. A fixed-size array of root pointer stacks is allocated to every GPU thread before
a kernel starts. Again, a dynamic kernel launch would require additional root
pointer stacks, which the current design cannot accommodate.

In the future, the GC can be updated to use different, extensible data structures
for safepoint states and root sets. This would allow for GC-enabled dynamic kernel
launches.

61

4 A garbage collector for CUDAnative

For the time being, GC-enabled dynamic kernel launches are prohibited. However,
GC-enabled kernel launches can still dynamically launch non-GC kernels.

4.4 Conclusion

We designed and implemented two distinct lowering strategies: trivial memory
management and a GC. The former is aimed at enabling sparingly used language
features in typical GPU kernels and conforms to the state of the art in memory
management for managed language implementations that target GPUs. The latter is
designed to support idiomatic Julia code. It is, to the best of our knowledge, the first
implementation of fully transparent garbage collection for GPU kernels.

Designing, implementing, and refining the GPU GC required significant effort
that translates to 3696 additional lines of CUDAnative code. To verify the GPU GC’s
functional and non-functional properties, we also implemented 1315 lines worth of
GC benchmarks.

The GPU GC is designed for direct integration into CUDAnative. To that end, we
have sent a pull request containing the GPU GC implementation,2 which is currently
under review.

2See https://github.com/JuliaGPU/CUDAnative.jl/pull/419 for the current state of the pull
request.

62

https://github.com/JuliaGPU/CUDAnative.jl/pull/419

5 Evaluation

The previous chapter presented the design of a GPU GC, as implemented for CUDA-
native.1 However, a mere design does leave some important questions unanswered.
In this chapter, we will answer the following questions.

1. Qualitatively, which language features are enabled directly by the GC?

2. Furthermore, can the GC be leveraged—as we previously claimed—to imple-
ment language features that rely on having a GC but require additional logic
for a working implementation?

3. Quantitatively, what is the GC’s variable overhead, that is, how well does the
GC perform in terms of run time compared to trivial memory management
when run on a set of benchmarks that rely strongly on memory allocation?

4. Quantitatively, how does the initial GC heap size affect the GC’s performance?

5. Quantitatively, what is the GC’s constant overhead, that is, how well does the
GC perform in terms of run time compared to trivial memory management
when run on a set of benchmarks that do not rely on memory allocation at all?

We identify the first two questions as related to functional requirements and the
last three points as pertaining to non-functional requirements. When it comes to
non-functional aspects, we are interested mainly in telling if the GC described in
this thesis has acceptable overhead, that is, if its overhead is sufficiently small for its
use to be justifiable. We will answer all five questions in order.

5.1 Functional aspects

When it comes to the GC’s functional aspects, we distinguish between directly enabled
language features and indirectly enabled language features. The former category refers
to Julia language features that can be wholly implemented solely by introducing a

1See https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging for the source code.

63

https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging

5 Evaluation

memory management scheme. The latter refers to features that rely on a memory
management scheme plus some dedicated runtime library support. These categories
are related to questions one and two of our evaluation, respectively.

5.1.1 Directly enabled language features

The language feature that is directly enabled by GC is mutable and/or recursive
struct instantiation.

The GC hence supplants the proof-of-concept implementation for mutable and/or
recursive struct allocation mentioned in Section 4.1.1. Said proof-of-concept
implementation consists of a trivial memory management scheme based on CUDA
malloc, causing it to leak memory permanently. That is, the proof-of-concept
implementation supports object allocation for some time, until a kernel exhausts the
pool of available GPU memory. Once that happens, no kernel can allocate objects
anymore.

The GC improves on the proof-of-concept implementation by ensuring that
memory does not leak. When the GC is enabled, allocations in one kernel do not
affect the amount of memory available to the next kernel and even in-memory
memory leaks are combated by occasional garbage collection phases.

Mutable and/or recursive struct types are a central part of Julia’s type system. In
Julia, they represent the only “right” way to implement a number of data structures
that are standard in all of computer science. For example, consider Listing 15, which
implements a singly linked list. A singly linked list, represented by the abstract
and generic List type, can either be empty (Nil) or nonempty (Cons). In this case,
struct Cons is both mutable and recursive. This is the idiomatic Julia way to
implement a linked list, as evidenced by the fact that the FunctionalCollections Julia
package independently developed a near-identical definition of a linked list,2 which
is published in a production-ready package.

To further demonstrate the usefulness of mutable and/or recursivestruct instances
on GPUs, we created example programs that use such struct instances to implement
a variety of nontrivial algorithms that includes linked list reductions, binary tree
searches, heap-allocated fixed-sized array operations, a genetic algorithm, and a
basic optimizer for a hypothetical Static Single Assignment (SSA) form compiler

2See https://github.com/JuliaCollections/FunctionalCollections.jl/blob/master/src/

PersistentList.jl for the list definition.

64

https://github.com/JuliaCollections/FunctionalCollections.jl/blob/master/src/PersistentList.jl
https://github.com/JuliaCollections/FunctionalCollections.jl/blob/master/src/PersistentList.jl

5.1 Functional aspects

1 abstract type List{T}

2 end

3

4 struct Nil{T} <: List{T}

5 end

6

7 mutable struct Cons{T} <: List{T}

8 value::T

9 next::List{T}

10 end

Listing 15: Types for a singly linked list.

IR [26].3 The source code for these algorithms is idiomatic Julia code that does not
function without a memory management scheme in place.

5.1.2 Indirectly enabled language features

The majority of Julia language features that depend on GC support also depend on
a number of runtime library functions. Such features include boxing, array creation
and manipulation, exception handling and dynamic multiple dispatch.

Arrays

To show that our GC abstractions and implementation are an adequate substrate
for indirectly enabled language features, we implement crucial low-level array
functionality. Specifically, we implement the following functions:

1. jl_alloc_array_1d allocates a one-dimensional array. We implement this
function by injecting a pass into the CUDAnative compiler pipeline that lowers
calls to this function to appropriate LLVM IR. jl_alloc_array_1d cannot be
implemented as a function in the GPU runtime library because it relies on
type reflection. Such reflection consists of accessing data structures the Julia
compiler has placed in CPU memory. This works well for programs that run
on the CPU, but the GPU cannot access arbitrary CPU memory. By making

3See https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging/gc-benchmarks for
the example programs’ source code. The programs referred to here are binary-tree.jl,
genetic-algorithm.jl, linked-list.jl, matrix.jl, ssa-opt.jl, static-arrays.jl and
stream-queries.jl.

65

https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging/gc-benchmarks

5 Evaluation

the compiler lower jl_alloc_array_1d, we can perform the reflection ahead
of time.

2. jl_alloc_array_2d allocates a two-dimensional array. To implement this
function, we use the same strategy as for jl_alloc_array_1d.

3. jl_alloc_array_3d allocates a three-dimensional array. We use the same
strategy as for jl_alloc_array_1d.

4. jl_new_array allocates an array of arbitrary dimensions. We use the same
strategy as for jl_alloc_array_1d plus some additional logic to accommodate
the fact that callers of jl_new_objectmay specify dimensions either using a
run-time–constructed tuple in GPU memory or a compile-time constant tuple
in CPU memory. The former requires that code be generated to read out the
tuple’s fields, the latter requires that dimensions be extracted at compile time.

5. jl_ptr_to_array_1d creates a one-dimensional array that uses a user-specified
memory buffer as backing storage. To implement jl_ptr_to_array_1d, we
use the same strategy as for jl_alloc_array_1d.

6. jl_ptr_to_array creates an array of arbitrary dimensions that uses a user-
specified memory buffer as backing storage. We use the same strategy as for
jl_new_object.

7. jl_array_grow_end expands an array by appending a number of default-
initialized elements to the end of the array. To do so, jl_array_grow_endmay
have to reallocate and copy the entire array. We implement this function as a
regular Julia function in the GPU runtime library.

8. jl_array_grow_beg expands an array by appending a number of default-
initialized elements at the beginning of the array, which may require array
buffer reallocation. We implement this function as a regular Julia function in
the GPU runtime library.

9. jl_array_grow_at expands an array by appending a number of default-
initialized elements at a user-specified index into the array, which may require
array buffer reallocation. We implement this function as a regular Julia function
in the GPU runtime library.

66

5.1 Functional aspects

10. jl_array_sizehint hints that an array is likely to require a particular capacity.
Such a hint is processed by preemptively resizing the array to that capacity. We
implement this function as a regular Julia function in the GPU runtime library.

11. jl_array_del_end deletes a number of elements at then end of an array. We
implement this function as a regular Julia function in the GPU runtime library.

12. jl_array_del_beg deletes a number of elements at then beginning of an array.
We implement this function as a regular Julia function in the GPU runtime
library.

13. jl_array_del_at deletes a number of elements at a user-specified index into
an array. We implement this function as a regular Julia function in the GPU
runtime library.

These functions form the backbone of Julia’s low-level array interface. They
enable a large amount of array-related features. These features include (1) array
creation, (2) reading and writing array elements, (3) querying an array’s dimensions,
(4) inserting elements into arrays, (5) deleting elements from arrays, (6) increasing
the capacity of arrays, (7) wrapping unmanaged buffers in arrays, (8) array compre-
hensions [44], and (9) high-level array functions such as fill, fill! and similar.
We again rely on a series of example programs to substantiate each of these claims.4

Standard library types

The array functionality enabled by jl_alloc_array_1d and jl_array_grow_end is
also sufficient for an array-based data type in the standard library, BitVector, to
become usable from GPU kernels. BitVector is a dense array of one-bit Booleans
that uses an array of integers as its backing storage. We successfully used it to
implement arbitrary-width integer arithmetic and—to our delight—found that it
worked out of the box, that is, without any modifications whatsoever.5 This is
quite a triumph, considering that the logic implementing BitVector is lengthy and
complicated. Moreover, it was to the best of our knowledge never intended for use
on GPUs and yet works flawlessly.

Other convenient array-based data types including dictionaries and hash sets are
now almost within reach: The essential infrastructure for supporting these types is

4See https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging/gc-benchmarks for
the example programs’ source code. The programs referred to here are array-expansion.jl,
array-features.jl, and array-reduction.jl.

5See the bitvector.jl example program for the source code.

67

https://github.com/jonathanvdc/CUDAnative.jl/tree/gc-staging/gc-benchmarks

5 Evaluation

in place, but their implementation in the standard library relies on recursion for their
internal logic. At the time of writing, recursion support has not yet been included in
CUDAnative as it first requires changes to the Julia compiler.

In early 2018, a pull request that makes the changes necessary for CUDAnative
to support recursion was opened in the Julia repository, but it has not yet been
merged in.6 Once these changes are merged in, CUDAnative will support recursion,
and—barring unforeseen obstacles—dictionary and hash set data types will also
work out of the box for GPU kernels.

We initially tried to merge the recursion-enabling pull request ourselves in hopes
of verifying this claim, but the pull request had already diverged too far from
the main Julia repository. Since it was posted, significant parts of the recursion-
enabling pull request have been re-designed and re-implemented in separate pull
requests to the Julia repository, which have been merged in. These later pull
requests are incompatible with the recursion-enabling pull request. Weaving these
incompatible pull requests together into a functional whole would be tantamount to
a re-implementation of the recursion-enabling pull request, a task better left to the
Julia contributor who opened the pull request in the first place.

5.2 Non-functional aspects

We now quantify the GC’s variable and constant overhead by comparing it to two
versions of the trivial memory management scheme as described in Section 4.1.1:
One equipped with the CUDA malloc allocator and another with the bump allocator
from Section 4.1.2. We also measure the GC’s sensitivity to initial heap sizes.

All measurements reported in this section were performed by an Ubuntu 18.10
machine sporting a GeForce GTX 970 GPU [59] and an Intel Core i7-6700K CPU
[25]. The machine has 16 GiB of main memory and the GPU has 4 GiB of device
memory. When measuring GC overheads, we will take two GC configurations into
consideration.

• Unoptimized GC uses a single shared free list that initially contains all free
memory in the GC heap.

• Optimized GC has eight local free list arenas, each of which is initially assigned
one tenth of the initial GC heap, as well as a shared free list arena containing
two tenths of the initial GC heap.

6See https://github.com/JuliaLang/julia/pull/25984 for the pull request.

68

https://github.com/JuliaLang/julia/pull/25984

5.2 Non-functional aspects

The optimized GC corresponds to the arena-based composition scheme from
Section 4.2.7. To ensure that the trivial memory management baseline’s allocator
does not run out of memory, we set the CUDA malloc heap size to 64 MiB. We set
the bump allocator’s heap to 60 MiB, which is slightly smaller than the malloc heap
size because the bump allocator’s heap is allocated from the malloc heap; taking
64 MiB is not an option. 60 MiB is more than enough memory for every benchmark
we will run and can hence provide a like-for-like comparison with a 64 MiB CUDA
malloc heap. Similarly, we set the initial GC heap size to 60 MiB unless otherwise
stated.

5.2.1 Variable overhead

To measure the variable overhead of the GPU GC compared to trivial memory
management, that is, the difference in run times with and without the GC, we run
all of the example programs from the previous section and measure their wall-clock
run times. There are no benchmark suites that measure GC overhead on GPUs
because there are currently no other GCs for GPUs. Hence our decision to reuse
the functional benchmarks: They represent a reasonable set of benchmarks that
corresponds neatly to the features we implemented. The functional benchmark
programs are more than sufficiently comprehensive to determine if the GC scheme
we are proposing holds water.

Figure 5.1 summarizes the performance of the unoptimized and optimized GC
implementations. Specifically, it shows the run times of the functional benchmarks
using unoptimized and optimized GC implementations, as well as two baseline
trivial memory management schemes. For easy comparison, these run times are
normalized.

We initially intended to include other memory allocators for GPUs in our compar-
ison, as they have been shown to deliver large speedups over CUDAnative. Xmalloc
promises speedups of 211× compared to CUDA malloc [43]. ScatterAlloc achieves
speedups between 10 and 100× compared to CUDA malloc [70]. Halloc claims
speedups of 3× to 1000× compared to ScatterAlloc [5].

However, using existing alternative memory allocators from CUDAnative appears
to be impossible: Such allocators are packaged as CUDA libraries. CUDA libraries
consist of both GPU kernels and CPU functions. These two types of code are closely
intertwined: The CPU functions refer directly to global variables in GPU memory,
which are laid out at link time. This implies that we need to use the same linking
strategy for both GPU kernels and CPU functions—if we link them separately, then

69

5 Evaluation

the addresses they both refer to will diverge. However, the CUDA programming
model does not support dynamic linking [57] and Julia only supports dynamic
linking.

Measurements represent the wall clock time of kernels plus the amount of
time required to construct and deconstruct a kernel’s GC or bump allocator heap.
Any actions performed prior to and after kernel execution, including memory
transfer and compilation are not included. Measurements were made by the
robust BenchmarkTools benchmarking package [22]. Every benchmark, memory
allocation scheme pair was run for 90 s in total. Measurements were aggregated by
taking their median rather than their mean, as per the BenchmarkTools manual’s
recommendations [65].

Some interesting phenomena can be discerned by observing Figure 5.1:

• The unoptimized GC is usually faster than the CUDA memory allocator. This
is a bit of a surprise as our initial goal was to create a GC with acceptable
overhead compared to trivial memory management. We never purposefully
tried to outperform malloc.

In hindsight, this is likely due to CUDA’s malloc implementation rather than
the unoptimized GC’s implementation. Alternative GPU memory allocators
appear to outperform malloc by substantial margins, which suggests that
CUDA’s malloc is implemented overly naively [5, 43, 70].

Regardless, this result implies that the GC’s performance is up to scratch: it
greatly improves on the status quo ante established by the proof-of-concept
trivial memory allocation scheme that CUDAnative previously used for object
allocations.

• The optimized GC is always faster than the CUDA allocator barring the “matrix”
benchmark. Usually, the optimized GC is faster by a substantial margin.

As for the “matrix” benchmark: This benchmark allocates a small number of
very large, long-lived chunks of memory and then manipulates that memory.
We suspect that the GC’s poorer performance there is mostly due to the fact that
the GC uses pinned host memory whereas malloc produces device memory.
The “matrix” benchmark appears to be the only benchmark where this is a
bottleneck.

The other benchmarks instead predominantly allocate many small, short-lived
objects, the type of workload our GPU GC is tuned for. The same can be said

70

5.2 Non-functional aspects

ar
ra

y ex
pan

sio
n

ar
ra

y fea
tu

res

ar
ra

y red
ucti

on
ar

ra
ys

bin
ar

y tre
e

bitv
ec

to
r

gen
eti

c alg
o

lin
ked

lis
t

m
atr

ix

ssa
opt

sta
tic

ar
ra

ys

str
ea

m
quer

ies
m

ea
n0

0.5

1

1.5

2

2.5

3

3.5

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0.
76

5

1.
39

7

0.
08

1 0.
27

1 0.
47

7

0.
97

3

3.
40

9

0.
17

9

3.
00

4

2.
08

9

0.
39

7

0.
79

0

1.
15

3

0.
28

1

0.
56

9

0.
03

0 0.
17

8

0.
28

7

0.
22

3

0.
63

3

0.
17

9

2.
91

6

0.
34

9

0.
29

0

0.
11

3

0.
50

4

0.
02

2

0.
07

8

0.
00

6

0.
00

1

0.
01

7

0.
00

8

0.
01

6

0.
00

1

0.
69

5

0.
00

6

0.
01

5

0.
00

1

0.
07

2

R
un

ti
m

e
/

ba
se

lin
e

CUDA malloc Unoptimized GC Optimized GC Bump allocator

Figure 5.1: Variable overhead of unoptimized, optimized GCs relative to trivial memory
management schemes. Lower scores are better.

71

5 Evaluation

for Julia’s CPU GC: The CPU GC is a generational GC with specialized pools
for allocating small objects, meaning that it is optimized specifically for many
small objects with limited lifetimes.

Whether GC-enabled GPU kernels will lean toward a few large, long-lived
objects or many small, short-lived objects—as CPU programs do—is an open
question. Our GC is, to the best of our knowledge, the first fully transparent GC
implementation for GPU kernels and hence we have no corpus of third-party
GC-enabled GPU kernels to examine in search of the idiomatic allocation
model for such kernels. The best we can do at this time is optimize for what is
common in CPU programs, that is, many small, short-lived objects.

• The optimized GC is always faster than the unoptimized GC. The performance
gap is relatively modest on some benchmarks but substantial on others. Addi-
tionally, the optimized GC appears to offer more predictable improvements
over the CUDA allocator than the unoptimized GC.

• The bump allocation has excellent performance that represents a lower bound
on allocation latencies, regularly achieving speedups of over 1000× relative to
CUDA malloc. The bump allocator’s performance remains out of reach of the
GC for now, suggesting that there is room for improvement.

In summary: The optimized GC is almost always an improvement over CUDA
malloc and the unoptimized GC is usually an improvement. We conclude that
the GC’s variable overhead compared to a CUDA malloc–based trivial memory
management scheme—the status quo ante—is more than reasonable.

5.2.2 Initial heap sizes

The previous section evaluated the dynamic overhead of the GPU GC by comparing
it to CUDA malloc and the bump allocator for identical heap sizes. In this section,
we will ascertain what the effect is of the initial heap size on the GC’s performance.

To that end, we run the same benchmarks we used to determine the GC’s
variable overhead and measure the run time of the unoptimized and optimized GC
configurations for increasingly large initial heap sizes.

We do not restrict the GC’s ability to increase the size of its heap beyond the
initial size, as heap expansion is a normal and necessary part of the GC’s collection
algorithm. Hence, smaller heap sizes give rise to a “pay as you go” system where
the GC heap is initially insufficiently large but gets expanded during collections

72

5.2 Non-functional aspects

to accommodate the working set size. Larger heap sizes imply a larger up-front
investment and fewer collections during the kernel’s execution.

The mechanism for expanding GC arenas is as follows: If the amount of free
memory assigned to an arena remains below a certain threshold even after recycling
garbage objects, then it is deemed to be memory-starved. For every memory-starved
arena, a section of free memory is allocated and assigned to that arena. The size of
the new section of memory equals the starvation threshold, which is 1 MiB for local
arenas and 4 MiB for the global arena.

Figure 5.2 shows how the mean normalized run time across all benchmarks evolves
as we increase the initial heap size for both the unoptimized and optimized GC
configurations. Every data point in Figure 5.2 is the normalized median benchmark
run time, averaged out over all benchmarks. Benchmark run times are normalized
relative to the the optimized GC configuration with 60 MiB.

Figure 5.2 shows that the initial heap size barely affects performance, with larger
initial heaps performing slightly worse than smaller ones. We believe that the initial
heap size’s limited impact on performance is due to the fact that allocation times
dominate, as can be inferred from Figure 5.1. Interrupt and collection overheads
appear to be mild in comparison, as evidenced by Figure 5.2. Smaller initial heap
sizes reduce the amount of up-front effort required for allocating and initializing
potentially unused sections of the heap, possibly explaining why smaller heaps
appear to perform slightly better than their larger counterparts.

5.2.3 Constant overhead

To measure constant overhead, we repeat the same experiment as for variable
overhead, but with a different set of benchmarks: A Julia port of the Rodinia
benchmark suite [14,21]. Rodinia is designed to represent typical scientific computing
loads for GPUs. None of the Rodinia benchmarks allocate memory dynamically,
which makes them suitable candidates for ascertaining the constant overhead of
using a GPU GC.

Figure 5.3 displays the GPU kernel run times for each Rodinia benchmark and
memory management scheme, normalized against CUDA malloc. Every Rodinia
benchmark consists of one or more kernels. Every measurement is the sum of the
minimum kernel run times for every kernel. We compute the minimum of every
kernel’s run time as it is a robust measure of a kernel’s execution time under ideal
circumstances [22]. Only kernel execution times are measured here. Set-up and
tear-down times are not included.

73

5 Evaluation

10 20 30 40 50 60

1

1.5

2

2.5

3

Initial GC heap size (MiB)

R
un

ti
m

e
/

ba
se

lin
e

Unoptimized GC Optimized GC

Figure 5.2: Normalized run times of benchmarks with unoptimized, optimized GCs. Lower
scores are better.

There seems to be clear evidence that using a GC incurs some constant overhead:
The relative additional cost of using a GC is never less than zero and quite large for
a number of benchmarks, especially for “backprop”.

Some additional overhead is only normal—every kernel is modified to support the
GC but then never uses the GC, giving us all the drawbacks and none of the upsides.
However, the amount of additional overhead is at first blush rather alarming: Even
if we were to treat “backprop” as an outlier, then we’d still have large overheads for
“pathfinder”, “lud”, and “bfs”.

Figure 5.4 helps to explain this phenomenon. It plots CUDA malloc–configured
kernel run times on the x axis and normalized run times for other configurations
on the y axis. Clearly, benchmarks that spend less time in total on GPU kernels are
more affected by the overhead. Indeed, an average run of the leftmost benchmark—
“backprop”—spends less than a millisecond on its GPU kernels and is most affected.
An average run of the rightmost benchmark—“streamcluster”—spends a little under
a second on the GPU and is barely affected. These observations suggest that the
GC’s constant overhead is indeed a constant factor.

The GC’s constant overhead is due to a write to pinned memory that occurs at the
end of every GC-enabled kernel to move the active warp from the “not in safepoint”
state to the “in perma-safepoint” state. It stands to reason then that short-lived
kernels will be most affected by this write’s overhead. Relatively long-lived kernels,

74

5.2 Non-functional aspects

bac
kpro

p

path
finder lu

d nw bfs

par
tic

lefi
lte

r

leu
kocy

te

str
ea

m
clu

ste
r0

1

2

3

4

5

6

7

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

6.
51

3

1.
64

9

1.
88

0

1.
16

8 1.
65

9

1.
15

0

1.
13

0

1.
00

4

6.
06

1

1.
67

6

1.
89

6

1.
16

6 1.
67

3

1.
15

2

1.
32

2

1.
00

3

1.
00

6

1.
03

3 1.
33

4

1.
00

5

1.
00

5

1.
03

1

1.
00

2

0.
99

5

R
un

ti
m

e
/

ba
se

lin
e

CUDA malloc Unoptimized GC Optimized GC Bump allocator

Figure 5.3: Constant overhead of unoptimized, optimized GCs relative to trivial memory
management schemes. Lower scores are better.

75

5 Evaluation

1,000 10,000 100,000 1,000,000

2

4

6

Baseline (µs)

R
un

ti
m

e
/

ba
se

lin
e

CUDA malloc
Unoptimized GC

Optimized GC
Bump allocator

Figure 5.4: Constant overhead of unoptimized, optimized GCs relative to a trivial memory
management scheme scheme built on CUDA malloc, by benchmark duration.
Lower scores are better. Points are placed in the same order as the bars in
Figure 5.3 for easy comparison.

on the other hand, are barely affected. The write to pinned memory occurs both for
the “Unoptimized GC” and “Optimized GC” configurations, explaining why their
results almost always coincide.

76

6 Related work

This chapter briefly describes work that is related to the contents of this thesis.
It discusses the state of the art in three main fields of research: Abstractions for
GC-related information in compilers, allocators for GPU memory and managed
language implementations that target GPUs.

6.1 Garbage collection abstractions

All managed language implementations have to shepherd GC-related information
through their compilation pipelines. Of particular interest is how compiler IRs
represent the fact that a pointer may refer to a GC-managed object.

• High-level IRs tend to have a rich type system and use that type system to
identify potential GC-managed object references.

For instance, Java and C# code compiles to bytecode suitable for execution
on the Java Virtual Machine (JVM) and Common Language Runtime (CLR),
respectively. Both of these virtual machines’ bytecodes use the type system to
represent GC-managed object references [29, 74].

• Low-level IRs are typically designed for low-level languages. Point in case:
The two most prominent compiler frameworks—GCC and LLVM—were both
designed with C-like languages in mind [39, 50].

Managed languages increasingly target these low-level compilers, particularly
LLVM. Julia is a prime example of such a language. Other LLVM-targeting
managed languages include Haskell [73], D [51] and Swift [36].

Broadly, these languages can use some combination of the following three
strategies to support precise garbage collection despite targeting a low-level
compiler:

1. Eagerly lower GC abstractions to runtime library calls. This is what,
e.g., Glasgow Haskell Compiler (GHC) does. The major downside to this

77

6 Related work

approach is that it may rather liberally insert calls to unknown functions,
potentially hampering the low-level compiler’s optimizer.

2. Extend the low-level compiler with GC abstractions. This approach
has spawned two distinct categories of GC abstractions for LLVM: The
legacy gcroot, gcread and gcwrite intrinsics and the newer statepoint
intrinsics.

Neither abstraction seems to enjoy widespread adoption: As of March
2016, only two projects—Azul’s Zing/C4 and Microsoft’s llilc—are
known users of statepoints [64]. We are not aware of any recent additions
to this list.

3. Take control of the optimization pipeline. This is the Julia compiler’s
preferred approach. Julia uses LLVM’s pointer address spaces feature to
encode GC pointers, then runs a sequence of optimizations and eventually
lowers the address spaces to lower-level GC-supporting instructions [46].

6.2 Allocators for GPU memory

Faced with CUDA malloc’s rather disappointing performance, a number of novel
allocators have been developed for GPUs. These allocators include Xmalloc [43],
ScatterAlloc [70] and Halloc [5]. All three try to reduce allocation times by relying
on lock-free data structures based on carefully-orchestrated atomic operations.

In contrast, Veldema and Philippsen’s GPU GC uses a simple free list allocator,
just like the GC presented in this thesis [76].

6.3 Managed language implementations for GPUs

Compiling managed languages for GPUs seems to be a popular pursuit. Oftentimes,
only a restricted subset of the language can be compiled for GPUs. For instance,
Copperhead is a Python module that compiles a restricted subset of Python code
down to efficient GPU kernels [20]. In a similar vein, Fumero et al.’s work on
heterogeneous array programming allows programmers to express use a restricted
subset of Java for expressing stream computations that run on the GPU [33, 34].

These language subsets typically include low-level language features such as
arithmetic and function calls, but tend to elide the features that typify managed
languages: object allocation and exception handling.

78

6.3 Managed language implementations for GPUs

Rootbeer is a notable exception: It compiles Java code to GPU kernels and supports
almost all features of the Java programming language, including object allocation
and exception handling [62]. Rootbeer is quite similar to CUDAnative in that sense:
Both projects aim to compile arbitrary code for execution on GPUs. Like the work
presented in this thesis, Rootbeer offers a trivial memory allocation scheme based on
CUDA’s malloc. Rootbeer never frees and eventually runs out of memory.

79

7 Conclusion

Over the course of this thesis, we first discussed the unique properties of GPUs,
Julia and CUDAnative. We then moved on to the design and implementation of
GC-related abstractions in the Julia compiler, identifying the need for an abstraction
level that is sufficiently robust to support a GPU GC and as thin as possible. We
subsequently detailed the first main contribution of this thesis: A lightweight,
intrinsics-based abstraction for precise, non-moving, generational GCs.

Next, we discussed how that abstraction can be used to implement both trivial
memory management and a full-blown GC for GPUs. We expounded on the design
of the latter as it represents both the second main contribution of this thesis and a
major step forward compared to the state of the art. To the best of our knowledge,
our fully transparent implementation of garbage collection for GPU kernels is the
first of its kind.

To ensure that the GPU GC meets functional and non-functional requirements, we
thoroughly evaluated the Julia language features that now work thanks to the GC
as well as the variable and constant overhead of enabling the GC for GPU kernels.
The results are encouraging: Despite its relatively straightforward design, our GC
actually manages to outperform CUDA malloc in terms of variable overhead, on
average offering speedups of 2×.

7.1 Future work

The work presented in this thesis is designed to be a starting point for future
innovation in addition to its aforementioned role of pushing the envelope of
managed languages that target GPUs. We hence see a number of directions for
future research.

Firstly, an implementation of the remaining runtime functions that support Julia
arrays and similar GC-dependent constructs is bound to be useful from a functional
viewpoint: Such an implementation would allow for ever more Julia code to be
compiled to GPU kernels.

81

7 Conclusion

With regard to non-functional requirements, it would be interesting to see if GPU
system calls can be implemented efficiently for NVIDIA devices using existing
mechanisms. System calls could then replace the CPU-to-GPU callbacks that now
underpin the flexible interrupt mechanism introduced in this thesis for the purpose
of triggering collections.

Finally, a lock-free allocator that truly plays to the strengths of GPUs would be a
more than worthwhile addition to the GC. It would also be interesting to see how
such an allocator integrates with the arena composition scheme introduced in this
work.

82

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (2016), pp. 265–283.

[2] Abhinav, and Nasre, R. FastCollect: offloading generational garbage collec-
tion to integrated GPUs. In International Conference on Compilers, Architectures,
and Sythesis of Embedded Systems (CASES) (2016), IEEE, pp. 1–10.

[3] Adinets, A. Adaptive Parallel Computation with CUDA Dynamic
Parallelism. NVIDIA Developer Blog, https://devblogs.nvidia.com/
introduction-cuda-dynamic-parallelism/ (May 2014). Accessed on June 5,
2019.

[4] Adinets, A. CUDA Dynamic Parallelism API and Principles. NVIDIA Devel-
oper Blog, https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-
principles/ (May 2014). Accessed on June 5, 2019.

[5] Adinetz, A. V., and Pleiter, D. Halloc: a high-throughput dynamic memory
allocator for GPGPU architectures. In GPU Technology Conference (GTC) (2014),
vol. 152.

[6] Agesen, O. GC points in a threaded environment.

[7] Appel, A. W. Garbage collection can be faster than stack allocation. Information
Processing Letters 25, 4 (1987), 275–279.

[8] Appel, A. W. Simple generational garbage collection and fast allocation. Software:
Practice and Experience 19, 2 (1989), 171–183.

[9] Attanasio, C. R., Bacon, D. F., Cocchi, A., and Smith, S. A comparative
evaluation of parallel garbage collector implementations. In International
Workshop on Languages and Compilers for Parallel Computing (2001), Springer,
pp. 177–192.

83

https://devblogs.nvidia.com/introduction-cuda-dynamic-parallelism/
https://devblogs.nvidia.com/introduction-cuda-dynamic-parallelism/
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/

Bibliography

[10] Baker, J., Cunei, A., Kalibera, T., Pizlo, F., and Vitek, J. Accurate garbage col-
lection in uncooperative environments revisited. Concurrency and Computation:
Practice and Experience 21, 12 (2009), 1572–1606.

[11] Baker Jr, H. G. List processing in real time on a serial computer. Communications
of the ACM 21, 4 (1978), 280–294.

[12] Besard, T. Dynamic parallelism. https://github.com/JuliaGPU/CUDAnative.
jl/pull/362, May 2019. Accessed on June 5, 2019.

[13] Besard, T., Churavy, V., Edelman, A., and De Sutter, B. Rapid software
prototyping for heterogeneous and distributed platforms. Advances in Software
Engineering (2019).

[14] Besard, T., and Foket, C. Benchmark suite for heterogeneous computing
infrastructures. https://github.com/JuliaParallel/rodinia. Accessed on
May 8, 2019.

[15] Besard, T., Foket, C., and De Sutter, B. Effective extensible programming:
unleashing Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems
30, 4 (2019), 827–841.

[16] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. Julia: A fresh approach
to numerical computing. SIAM review 59, 1 (2017), 65–98.

[17] Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145 (2012).

[18] Blackburn, S. M., and McKinley, K. S. Ulterior reference counting: Fast garbage
collection without a long wait. In ACM SIGPLAN Notices (2003), vol. 38, ACM,
pp. 344–358.

[19] Boehm, H.-J., and Weiser, M. Garbage collection in an uncooperative environ-
ment. Software: Practice and Experience 18, 9 (1988), 807–820.

[20] Catanzaro, B., Garland, M., and Keutzer, K. Copperhead: compiling an
embedded data parallel language. In Symposium on Principles and practice of
parallel programming (PPoPP’11) (2011), pp. 47–56.

[21] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and

Skadron, K. Rodinia: A benchmark suite for heterogeneous computing. In

84

https://github.com/JuliaGPU/CUDAnative.jl/pull/362
https://github.com/JuliaGPU/CUDAnative.jl/pull/362
https://github.com/JuliaParallel/rodinia

Bibliography

2009 IEEE international symposium on workload characterization (IISWC) (2009),
Ieee, pp. 44–54.

[22] Chen, J., and Revels, J. Robust benchmarking in noisy environments. arXiv
preprint arXiv:1608.04295 (2016).

[23] Churavy, V., Wilcox, L. C., Kozdon, J. E., and Ramadhan, A. GPUifyLoops.jl:
Support for writing loop-based code that executes both on CPU and GPU.
https://juliagpu.gitlab.io/GPUifyLoops.jl/, March 2019. Accessed on
May 31, 2019.

[24] Colburn, T., and Shute, G. Abstraction in computer science. Minds and Machines
17, 2 (2007), 169–184.

[25] Corporation, I. Intel® Core™ i7-6700K Processor. https://ark.intel.
com/content/www/us/en/ark/products/88195/intel-core-i7-6700k-

processor-8m-cache-up-to-4-20-ghz.html, 2015. Accessed on June 12,
2019.

[26] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems (TOPLAS) 13, 4
(1991), 451–490.

[27] Dawson, J. L. Improved effectiveness from a real time lisp garbage collector.
In Proceedings of the 1982 ACM symposium on LISP and functional programming
(1982), ACM, pp. 159–167.

[28] Durant, L., Giroux, O., Harris, M., and Stam, N. Inside Volta: The world’s
most advanced data center GPU. NVIDIA Developer Blog, https://devblogs.
nvidia.com/inside-volta (May 2017). Accessed on May 24, 2019.

[29] Ecma International. Common Language Infrastructure (CLI). June 2012.

[30] Edelman, A. Julia: A fresh approach to parallel programming. In 2015
IEEE International Parallel and Distributed Processing Symposium (2015), IEEE,
pp. 517–517.

[31] Fischer, K., Churavy, V., Hatherly, M., Hildebrand, M., Zhou, M., Karpinski, S.,
Besard, T., Yu, Y., and Arslan, A. Working with LLVM. https://github.com/
JuliaLang/julia/blob/master/doc/src/devdocs/llvm.md, August 2018.
Accessed on June 2, 2019.

85

https://juliagpu.gitlab.io/GPUifyLoops.jl/
https://ark.intel.com/content/www/us/en/ark/products/88195/intel-core-i7-6700k-processor-8m-cache-up-to-4-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88195/intel-core-i7-6700k-processor-8m-cache-up-to-4-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88195/intel-core-i7-6700k-processor-8m-cache-up-to-4-20-ghz.html
https://devblogs.nvidia.com/inside-volta
https://devblogs.nvidia.com/inside-volta
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/llvm.md
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/llvm.md

Bibliography

[32] Fischer, K., Yu, Y., Besard, T., Nash, J., Arslan, A., Vettorel, D., Churavy,
V., and Zhou, M. LLVM late GC lowering. https://github.com/JuliaLang/
julia/blob/master/src/llvm-late-gc-lowering.cpp, May 2019. Accessed
on June 2, 2019.

[33] Fumero, J. J., Remmelg, T., Steuwer, M., and Dubach, C. Runtime Code
Generation and Data Management for Heterogeneous Computing in Java. In
Proceedings of the Principles and Practices of Programming on The Java Platform -
PPPJ ’15 (New York, New York, USA, 2015), ACM Press, pp. 16–26.

[34] Fumero, J. J., Steuwer, M., and Dubach, C. A Composable Array Function
Interface for Heterogeneous Computing in Java. In Proceedings of ACM SIG-
PLAN International Workshop on Libraries, Languages, and Compilers for Array
Programming - ARRAY’14 (2014), pp. 44–49.

[35] Fung, W. W., and Aamodt, T. M. Thread block compaction for efficient SIMT
control flow. In 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (2011), IEEE, pp. 25–36.

[36] Garcı́a, C. G., Espada, J. P., Bustelo, B. C. P. G., and Lovelle, J. M. C. Swift vs.
Objective-C: A new programming language. IJIMAI 3, 3 (2015), 74–81.

[37] GCC developers. Using the GNU Compiler Collection (GCC): Labels as Values.
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html. Accessed
on June 4, 2019.

[38] Govett, M. W., Middlecoff, J., and Henderson, T. Running the NIM next-
generation weather model on GPUs. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (2010), IEEE
Computer Society, pp. 792–796.

[39] Griffith, A. GCC: the complete reference. McGraw-Hill, Inc., 2002.

[40] Harris, M. Unified Memory for CUDA Beginners. NVIDIA Developer Blog,
https://devblogs.nvidia.com/unified-memory-cuda-beginners/ (June
2017). Accessed on June 4, 2019.

[41] Henderson, F. Accurate garbage collection in an uncooperative environment.
In ACM SIGPLAN Notices (2002), vol. 38, ACM, pp. 150–156.

86

https://github.com/JuliaLang/julia/blob/master/src/llvm-late-gc-lowering.cpp
https://github.com/JuliaLang/julia/blob/master/src/llvm-late-gc-lowering.cpp
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://devblogs.nvidia.com/unified-memory-cuda-beginners/

Bibliography

[42] Homm, F., Kaempchen, N., Ota, J., and Burschka, D. Efficient occupancy grid
computation on the gpu with lidar and radar for road boundary detection. In
2010 IEEE Intelligent Vehicles Symposium (2010), IEEE, pp. 1006–1013.

[43] Huang, X., Rodrigues, C. I., Jones, S., Buck, I., and Hwu, W.-m. Xmalloc: A
scalable lock-free dynamic memory allocator for many-core machines. In Pro-
ceedings of the 2010 10th IEEE International Conference on Computer and Information
Technology (2010), IEEE, pp. 1134–1139.

[44] Introducing Julia contributors. Introducing Julia: Arrays and tuples. https:
//en.wikibooks.org/wiki/Introducing_Julia/Arrays_and_tuples, Febru-
ary 2019. Accessed on June 11, 2019.

[45] Julia contributors. Julia micro-benchmarks. https://julialang.org/

benchmarks/. Accessed on April 23, 2019.

[46] Julia contributors. Working with LLVM. https://docs.julialang.org/en/
v1/devdocs/llvm/index.html#Representation-1, August 2018. Accessed on
November 2, 2018.

[47] Kiczales, G. Towards a new model of abstraction in software engineering. In
Proceedings of the 1991 International Workshop on Object Orientation in Operating
Systems (1991), IEEE, pp. 127–128.

[48] Kramer, J. Is abstraction the key to computing? Communications of the ACM 50,
4 (2007), 36–42.

[49] Köplinger, A., Turaev, M., and Hasitzka, A. Generational GC. https://
www.mono-project.com/docs/advanced/garbage-collector/sgen/, Febru-
ary 2019. Accessed on June 1, 2019.

[50] Lattner, C., and Adve, V. LLVM: a compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization (2004), IEEE
Computer Society, p. 75.

[51] LDC Developers. LLVM-based D Compiler. https://github.com/ldc-
developers/ldc. Accessed on May 8, 2019.

[52] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., et al. Debunking the

87

https://en.wikibooks.org/wiki/Introducing_Julia/Arrays_and_tuples
https://en.wikibooks.org/wiki/Introducing_Julia/Arrays_and_tuples
https://julialang.org/benchmarks/
https://julialang.org/benchmarks/
https://docs.julialang.org/en/v1/devdocs/llvm/index.html#Representation-1
https://docs.julialang.org/en/v1/devdocs/llvm/index.html#Representation-1
https://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://github.com/ldc-developers/ldc
https://github.com/ldc-developers/ldc

Bibliography

100× GPU vs. CPU myth: an evaluation of throughput computing on CPU and
GPU. ACM SIGARCH computer architecture news 38, 3 (2010), 451–460.

[53] LLVM project. LLVM language reference manual. http://llvm.org/docs/
LangRef.html, April 2019. Accessed on May 1, 2019.

[54] Maas, M., Reames, P., Morlan, J., Asanović, K., Joseph, A. D., and Kubiatowicz,
J. GPUs as an opportunity for offloading garbage collection. In ACM SIGPLAN
Notices (2012), vol. 47, ACM, pp. 25–36.

[55] Nickolls, J., Buck, I., and Garland, M. Scalable parallel programming. In 2008
IEEE Hot Chips 20 Symposium (HCS) (2008), IEEE, pp. 40–53.

[56] Nuseibeh, B., and Easterbrook, S. Requirements engineering: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (2000), ACM,
pp. 35–46.

[57] Nvidia. CUDA C programming guide v10.1. Nvidia Corporation, March 2019.

[58] Nvidia. Parallel Thread Execution ISA v6.4. Nvidia Corporation, March 2019.

[59] NVIDIA Corporation. GeForce GTX 970: Specifications. https://www.
geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications,
2014. Accessed on June 12, 2019.

[60] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips,
J. C. GPU computing. Proceedings of the IEEE 96, 5 (2008).

[61] Pohl, K. Requirements engineering: fundamentals, principles, and techniques.
Springer Publishing Company, Incorporated, 2010.

[62] Pratt-Szeliga, P. C., Fawcett, J. W., and Welch, R. D. Rootbeer: Seamlessly
using GPUs from Java. In High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on (2012), IEEE, pp. 375–380.

[63] Pratx, G., and Xing, L. GPU computing in medical physics: a review. Medical
physics 38, 5 (2011), 2685–2697.

[64] Reames, P. Status of Garbage Collection with Statepoints in LLVM. http:
//lists.llvm.org/pipermail/llvm-dev/2016-March/096360.html, March
2016. Accessed on November 2, 2018.

88

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
http://lists.llvm.org/pipermail/llvm-dev/2016-March/096360.html
http://lists.llvm.org/pipermail/llvm-dev/2016-March/096360.html

Bibliography

[65] Revels, J., Arslan, A., Ahrens, P., Adams, L., Herriman, J., Goerz, M., Johnson,
S. G., and Mauro. BenchmarkTools manual. https://github.com/JuliaCI/
BenchmarkTools.jl/blob/master/doc/manual.md, November 2018. Accessed
on June 10, 2019.

[66] Rhodin, H. A PTX code generator for LLVM. Bachelor’s thesis, Saarland
University, Saarbrücken, Germany, October 2010.

[67] Romero, M., and Urra, R. CUDA Overview. http://cuda.ce.rit.edu/cuda_
overview/cuda_overview.htm. Accessed on May 27, 2019.

[68] Sanders, J., and Kandrot, E. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010.

[69] Sobalvarro, P. A Lifetime-Based Garbage Collector for LISP Systems on
General-Purpose Computers. Tech. rep., Massachusetts Institute of Technology,
Cambridge Artificial Intelligence Lab, 1988.

[70] Steinberger, M., Kenzel, M., Kainz, B., and Schmalstieg, D. ScatterAlloc:
Massively parallel dynamic memory allocation for the GPU. In 2012 Innovative
Parallel Computing (InPar) (2012), IEEE, pp. 1–10.

[71] Stuart, J. A., Cox, M., and Owens, J. D. GPU-to-CPU callbacks. In European
Conference on Parallel Processing (2010), Springer, pp. 365–372.

[72] TachyonicClock42, and Besard, T. CUDA debugger API. https:

//devtalk.nvidia.com/default/topic/1030648/cuda-programming-and-

performance/cuda-debugger-api/, March 2019. Accessed on June 5, 2019.

[73] Terei, D. A., and Chakravarty, M. M. An LLVM backend for GHC. In ACM
Sigplan Notices (2010), vol. 45, ACM, pp. 109–120.

[74] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V.
Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers (2010), IBM Corp., pp. 214–224.

[75] Van Lamsweerde, A. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering (2001), IEEE, pp. 249–262.

[76] Veldema, R., and Philippsen, M. Iterative data-parallel mark&sweep on a GPU.
In ACM SIGPLAN Notices (2011), vol. 46, ACM, pp. 1–10.

89

https://github.com/JuliaCI/BenchmarkTools.jl/blob/master/doc/manual.md
https://github.com/JuliaCI/BenchmarkTools.jl/blob/master/doc/manual.md
http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm
http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm
https://devtalk.nvidia.com/default/topic/1030648/cuda-programming-and-performance/cuda-debugger-api/
https://devtalk.nvidia.com/default/topic/1030648/cuda-programming-and-performance/cuda-debugger-api/
https://devtalk.nvidia.com/default/topic/1030648/cuda-programming-and-performance/cuda-debugger-api/

Bibliography

[77] Verroken, H. Contextual language abstractions for low-level GPGPU program-
ming in Julia. Master’s thesis, Ghent University, June 2018.

[78] Veselỳ, J., Basu, A., Bhattacharjee, A., Loh, G., Oskin, M., and Reinhardt,
S. K. GPU System Calls. arXiv preprint arXiv:1705.06965 (2017).

[79] Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., and Shringarpure,
A. On the limits of GPU acceleration. In Proceedings of the 2nd USENIX conference
on Hot topics in parallelism (2010), vol. 13.

[80] Wajnerman, J. Garbage collector. https://crystal-lang.org/2013/12/05/
garbage-collector.html, December 2013. Accessed on June 1, 2019.

[81] Wenzel, M., Turn, N., Schonning, N., Mabee, D., Petrusha, R., B, M., Kotas,
J., A, A., xaviex, Jones, M., Ciechan, M., Alan, Latham, L., and tompratt

AQ. Fundamentals of garbage collection. https://github.com/dotnet/docs/
blob/master/docs/standard/garbage-collection/fundamentals.md, May
2019. Accessed on June 1, 2019.

[82] Wilson, P. R. Uniprocessor garbage collection techniques. In International
Workshop on Memory Management (1992), Springer, pp. 1–42.

[83] Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. Dynamic storage
allocation: A survey and critical review. In International Workshop on Memory
Management (1995), Springer, pp. 1–116.

[84] Wu, X., Koslowski, A., and Thiel, W. Semiempirical quantum chemical
calculations accelerated on a hybrid multicore CPU–GPU computing platform.
Journal of chemical theory and computation 8, 7 (2012), 2272–2281.

[85] Zhang, J., You, S., and Gruenwald, L. Indexing large-scale raster geospa-
tial data using massively parallel GPGPU computing. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic Information
Systems (2010), ACM, pp. 450–453.

90

https://crystal-lang.org/2013/12/05/garbage-collector.html
https://crystal-lang.org/2013/12/05/garbage-collector.html
https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/fundamentals.md
https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/fundamentals.md

	Acronyms
	Introduction
	Background
	General-purpose GPU programming
	Parallel execution semantics
	GPU memory

	The Julia programming language
	Compilation pipeline
	Garbage collection

	CUDAnative: A Julia-to-GPU compiler
	Compilation strategy
	Workarounds for problematic runtime library functions
	The case for native language features
	Proof-of-concept object allocation for CUDAnative kernels
	Goals of this thesis

	Garbage collection
	A taxonomy of garbage collectors

	Garbage collection abstractions for Julia
	Requirements
	Preexisting abstractions
	Methodology
	Last abstraction layer: Runtime library calls
	Penultimate abstraction layer: Address spaces and intrinsics

	Low-level GC intrinsics
	Abstraction
	Implementation

	A garbage collector for CUDAnative
	Trivial memory management
	GC intrinsic lowering
	A bump allocator

	A garbage collector for GPU memory
	Related work
	High-level design
	GPU interrupts
	Collection
	Choice of memory type
	Root set management
	Allocation

	Limitations
	Concurrent kernel launches
	Dynamic parallelism

	Conclusion

	Evaluation
	Functional aspects
	Directly enabled language features
	Indirectly enabled language features

	Non-functional aspects
	Variable overhead
	Initial heap sizes
	Constant overhead

	Related work
	Garbage collection abstractions
	Allocators for GPU memory
	Managed language implementations for GPUs

	Conclusion
	Future work

	Bibliography

