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Abstract

Equality saturation enables compilers to explore many se-
mantically equivalent program variants, deferring optimiza-
tion decisions to a final extraction phase. However, existing
frameworks exhibit sequential execution and hard-coded sat-
uration loops. This limits scalability and requires significant
engineering effort to customize saturation behavior.
This paper addresses these limitations using three novel

techniques. First, it shows how saturation can be parallelized
thanks to the use of thread-safe data structures and the no-
tion of deferred e-graph updates. Second, it provides an ex-
tensible mechanism to express custom and composable satu-
ration strategies. Third, it generalizes e-graph metadata to
support custom e-graph annotations.

The implementation, written in Scala, is evaluated on four
use-cases: classical program optimization, idiom recognition,
scalability strategies and incremental equality saturation.
The results show that it outperforms several existing equal-
ity saturation engines, including the highly optimized egglog
library. When used to reimplement an existing idiom recog-
nition technique, the new design finds higher-quality idioms,
16× faster. Additionally, the design is able to natively express
state-of-the-art custom equality saturation behavior such as
incremental equality saturation and multi-phase rewriting
strategies without any modification to the core library.

CCS Concepts: • Software and its engineering → Com-

pilers; Functional languages; • Theory of computation →
Equational logic and rewriting; • Computing method-

ologies → Parallel algorithms.

Keywords: Equality Saturation, Program Optimization, E-
Graphs, Compiler Infrastructure, Rewrite Systems
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1 Introduction

Equality saturation (EqSat) [26] is a program optimization
technique that represents many equivalent program variants
in a finite data structure: an e-graph. EqSat enumerates the
transformation space by applying rewrite rules until the
e-graph is saturated. A cost model then extracts the best
solution, solving the phase ordering problem. It has been
widely used in many use-cases, from idiom recognition [29]
to high-level synthesis [4].
Existing saturation engines [13, 21, 34, 37] have shown

equality saturation scales to real-world applications. How-
ever, their implementation uses a single-threaded fixed satu-
ration loop, offering little in terms of modularity or extensi-
bility. The e-class analysis framework they expose also only
supports lattice-based analysis and requires custom imple-
mentations for other metadata use cases [24]. This hinders
the development of new equality saturation approaches.

This work addresses those limitations through three inno-
vations: parallel e-matching and rewriting; declarative strate-
gies; and generalized metadata. First, parallel e-matching is
enabled using a thread-safe e-graph data structure and par-
allel rewriting is enabled by deferred updates in the form
of commands. These commands can in parallel be gener-
ated, simplified, and scheduled for batch-parallel application,
reducing time spent on e-graph updates.

Second, strategies replace fixed saturation loops with mod-
ular and extensible building blocks. Base strategies imple-
ment single rewrite steps consisting of e-matching and rewrit-
ing, then combinators declaratively construct more complex
behavior. For example, the strategy below applies rules with
exponential back-off scheduling until either saturation, a
timeout, or an iteration limit is reached:

BackoffRuleApplication(rules , n, c)
.withTimeout(timeout)

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3771775.3786266
https://doi.org/10.1145/3771775.3786266
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.withIterationLimit(iterationLimit)

.repeatUntilStable

Finally, generalized e-graph metadata provide a single
abstraction that unifies the existing notion of e-class analyses
with emerging use cases such as e-class versions [24]. This
offers metadata as a built-in feature, whereas prior work have
to fork an equality saturation engine to embed additional
data directly in e-graph data structures.

These ideas are implemented in Foresight, an open-source
equality saturation library [28]. While Foresight is imple-
mented in Scala, the design and ideas presented could be
implemented in any modern programming language.
Foresight is evaluated on four case studies: Horner’s

method and matrix associativity optimization, latent idiom
recognition, existing saturation scalability mitigations, and
incremental equality saturation. Horner’s method andmatrix
associativity optimizations are benchmarks that permit com-
parison with recent work [36] on combining egglog [37]
with MLIR [10]. Latent idiom recognition (LIAR) applies
equality saturation to find idioms in functional programs [29].
The existing scalability mitigations are the custom algo-
rithms for Isaria [27] and SymPy [7].
On the Horner’s method and matrix associativity bench-

marks, Foresight outperforms the slotted, hegg libraries;
on matrix associativity it outperforms egglog thanks to its
parallelism. The Foresight-based LIAR re-implementation
obtains a geometric mean speedup of almost 16× over the
original and produces superior solutions. The Isaria and
SymPy strategies are encoded in 10 or fewer lines of code;
expressing them using Foresight allows them to be applied
in other settings, resulting in the finding that SymPy’s strat-
egy improves LIAR solutions while Isaria’s degrades them.

To summarize, this paper contributes the following:
• A parallel e-matching and rewriting technique based
on deferred commands (Section 4).

• A declarative strategy approach that generalizes the
saturation loop and controls rule scheduling, stopping
conditions, metadata, and more (Section 5).

• A generalization of e-graph metadata (Section 6).
• An empirical evaluation of Foresight on four case
studies: two standard benchmarks, one established
EqSat application, two known scalability mitigations,
and incremental EqSat (Section 7).

2 Background: Saturation Engine Design

This section discusses the fundamentals of equality satura-
tion, the existing landscape of equality saturation libraries,
and the limitations of these libraries.

2.1 Equality Saturation

Equality saturation is a compiler technique that addresses
the phase-ordering problem by deferring rewrite decisions.
Rather than applying transformations sequentially, equality

saturation adds all applicable rewrites to an e-graph, a data
structure representing many equivalent program variants,
until saturation. A cost heuristic then extracts the optimal
variant from the saturated e-graph.

Figure 1 illustrates this workflow. First, an input arithmetic
expression 1 is turned into an e-graph 2 , which wraps each
operation (a variable reference, two constants, *, pow) from the
expression in an e-node. Each e-node consists of an operator
and arguments in the form of e-classes, groups of equivalent
e-nodes. In the initial e-graph, each e-class, represented by
the shading around e-nodes, has one e-node.
Through a process called e-matching, the e-graph 2 is

then searched for all occurrences of the left-hand sides of
the two rewrite rules in 3 . One such occurrence is found per
rule; both are encoded in 4 as matches. Each match names
the matched rule, the root e-class at which the match occurs,
and a substitution that maps each symbol in the rewrite rule
to an e-class in the e-graph.
Subsequently, each match is applied. Application starts

by instantiating the right-hand side of the matches’ rules
with the match substitution mappings, yielding expressions
that references e-classes: d * pow( d , e - 1) for the "pow n"

rule match and c + c for "mul 2". Each expression is then
inserted in the e-graph (reusing identical e-nodes if already
present) and its root is added to the match’s root e-class in
an operation called union.
Applying both matches from 4 results in the updated

e-graph 5 . This e-graph contains two e-classes containing
two e-nodes each: a and c . Each e-node represents a differ-
ent way to compute the same result, leading e-graph 5 to
compactly encode six variants of the original program:
1 2 * pow(v, 3)
2 2 * v * pow(v, 2)
3 pow(v, 3) + pow(v, 3)
4 v * pow(v, 2) + pow(v, 3)
5 pow(v, 3) + v * pow(v, 2)
6 v * pow(v, 2) + v * pow(v, 2)

Classic equality saturation consists of repeating thismatch-
and-apply process to further enrich the e-graph until it satu-
rates or until a user-specified stopping criterion is reached.
At that point, an extractor has a holistic view of the pro-
gram’s transformation space and uses that view to select a
concrete program variant, usually based on a cost function.
In this case, the extractor chooses expression 6 .

2.2 Equality Saturation Engines

While many equality saturation applications build their own
infrastructure in languages such as Java [26], Racket [18] and
Scala [9, 29], the trend is to rely on a tool or library [13, 21, 34,
37]. Such libraries typically include five main components:

• An e-graph implementation.
• A single-threaded rewrite engine that implements
and relies on an e-matching algorithm under the hood.



Parallel and Customizable Equality Saturation CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

2 * pow(v, 3)
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// Found:
[Match{

rule: "pow n",
root: c ,

subs: {x ↦→ d ,
n ↦→ e }},

Match{
rule: "mul 2",
root: a ,
subs: {y ↦→ c }}]

v

2 3

pow *
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b

c

d

e f 2 * v * pow(v, 2)

// Rewrite rules:
{ "pow n": pow(x, n) ⇒

x * pow(x, n-1)},
"mul 2": 2 * y ⇒ y + y }

1
2

3

4

5

6
Build

e-graph
Find

matches
Apply
matches Extract

Repeat until saturation

Figure 1. Equality saturation example. Input expression 1 is encoded as e-graph 2 . The e-graph is searched for occurrences
of rewrite rules 3 , leading to matches 4 . Match application produces e-graph 5 , from which expression 6 is extracted.

• An e-class analysis system that computes a domain-
specific fact for each e-class in the e-graph.

• An extractor that selects expressions from an e-graph
based on an application-specific cost function.

• An equality saturation loop that orchestrates rewrit-
ing, analyses and extraction.

The two most popular implementations of this model are
egg [34] and egglog [37]. egg is an equality saturation li-
brary whereas egglog is an extension of Datalog with first-
class support for e-graphs and equality saturation. Both are
implemented in Rust, and egglog has Python bindings [22].
Additionally, hegg [13] is a Haskell alternative to egg.

Beyond these mature libraries, research projects such as
slotted offer leaner egg-like libraries that experiment with
novel features. In slotted’s case, that feature is slotted e-
graphs [21], which encode variable bindings in e-graphs.

2.3 Limitations of Prior Saturation Engine Designs

As pre-implemented libraries enabled a range of modern
equality saturation applications, these applications’ tech-
niques to overcome the rapid e-graph growth associated
with classic equality saturation have revealed three limita-
tions of state of the art libraries: single-threaded execution,
limited support for custom saturation strategies, and limited
metadata support.

Single-Threaded Rewriting. The e-graph implementa-
tions in current equality saturation libraries are based on
a union-find data structure with path compression. This
data structure optimizes for sequential performance but path
compression is not thread safe, including for read-only op-
erations. Moreover, e-graph insertions and unions translate
to updates to data structures with complex invariants, creat-
ing another structural barrier to parallelization. As a result,
equality saturation libraries are single-threaded.

Rigid Saturation Loops. Without parallelism to mask
blow-ups in search space size, applications rely on curbing e-
graph growth directly through custom strategies—algorithms
that augment or replace the saturation loop.

A thread of general-purpose strategies is to apply Rein-
forcement Learning (RL) to guide rule application, where
policy-based approaches learn which rewrites to apply [1,
2, 23]. An alternative to RL is search-based planning, which
uses Monte Carlo Tree Search (MCTS) to explore alternative
construction paths before committing [8].
Beyond learned policies and MCTS, many systems curb

blow-ups with pragmatic, task-tuned controls layered on the
vanilla loop. Typical ingredients include:

• hard budgets: timeouts, node caps [16, 17, 19, 26, 31];
• phase separation that staggers rule families (e.g., sim-
plification before expansion) [9, 27, 35];

• rebasing, where the system periodically extracts a
best expression and reseeds the e-graph with only that
expression to prune dead expansions [7, 9, 27];

• rule scheduling with exponential backoff to prevent
hot rules from starving others [7];

• sampling of matches to cap per-iteration work [33];
• e-graph segmentation optimizes slices of the e-graph
in isolation [32].

Some of these features, such as rule scheduling and hard
budgets, benefit from built-in support in equality saturation
libraries such as egg, yet the prevailing pattern is for user
code to work around the library’s saturation loop with ad-
hoc, hard-coded strategies. This exposes a clear need for
first-class, programmable saturation strategies in libraries.

Limited Metadata Support. Emerging schemes to re-
duce explosive e-graph growth, such as incremental equality
saturation [24], rely on extending the e-graph with addi-
tional data, such as e-class versions. While equality satura-
tion libraries support e-class analyses, they do not support
generalized metadata, resulting in forks of equality satura-
tion libraries that change the core e-graph data structure to
support application-specific needs [24].
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3 Overview

The remainder of this paper presents the key ideas behind
Foresight, an equality saturation library in Scala that di-
rectly addresses the limitations highlighted above. These
ideas are:

• Parallel, deferred rewriting. Foresight creates par-
allelism at both the e-matching and match rewriting
stages of the rewriting process. E-Matching is paral-
lelized by opting for a thread-safe e-graph data struc-
ture that can be safely searched from multiple threads.
Match rewriting is parallelized rephrasing the task as
the computation of deferred commands that are opti-
mized before applying them in bulk to the e-graph.

• Flexible strategies. Instead of exposing a monolithic
equality saturation engine, Foresight provides mod-
ular saturation strategies. Built-in base strategies im-
plement rule application methodologies and are chore-
ographed using combinators that describe saturation
loops, stopping conditions, encapsulated analyses, and
more. These strategies allow users to express complex
saturation approaches with just a few lines of code.

• Generalized metadata. Foresight formulates meta-
data, including analysis and on-the-fly extraction re-
sults, as a stateful observer of the e-graph. E-Class
analyses and analysis-based tree extraction are imple-
mented as library-provided metadata instances.

These contributions let Foresight offer familiar function-
ality such as e-matching, e-class analyses and extraction,
while turning the three previously-identified limitations of
today’s libraries—single-threaded execution, limited meta-
data, and ad-hoc growth-curbing tactics—into first-class ca-
pabilities: parallel rewriting, generalized metadata, and pro-
grammable strategies. The following sections each detail one
of these ideas.

4 Parallel, Deferred Rewriting

Many aspects of the rewriting process in equality saturation
involve computing tasks that have no dependencies on each
other. Despite this, existing libraries operate in a serial fash-
ion and prioritize single-threaded performance. This section
describes how Foresight structures the rewriting process
into phases to maximize per-phase parallelism.

4.1 Parallel E-Matching

As shown in Figures 1 and 2, each saturation iteration begins
by finding rule matches over the e-graph. This process is
inherently parallel: each rewrite rule can be checked inde-
pendently against each e-class, and matching is semantically
read-only.
However, in existing equality saturation libraries [13, 21,

34, 37], parallel matching is unsafe due to the use of union-
find with path compression [25]. Although conceptually a
lookup, the find operation of the union-find may mutate

parent pointers during path compression. As matching fre-
quently invokes find while traversing the e-graph, unsyn-
chronized parallel reads can corrupt the union-find structure,
making the e-graph unsafe for concurrent access.

In contrast, Foresight employs a thread-safe union-find
in which parent pointers are stored in atomically updated
arrays indexed by e-class identifiers. Path compression is
preserved, but all parent updates are published using atomic
operations, ensuring that find performs no unsafe writes.
This design enables fully parallel e-matching over a shared
e-graph without global locks.

4.2 Parallel Rewriting Using Deferred Commands

Once the list of matches is obtained, existing tools will se-
quentially apply each match, updating the e-graph with each
application (Figure 2a, Line 12). To apply a match, the right-
hand side of the matching rule is first reconstructed using
the match’s substitutions. For example, consider the rule
"pow n": pow(x, n) ⇒ x * pow(x, n-1)

One of the matches found for that rule in Figure 1 is:
Match{rule: "pow n", root: c ,

subs: {x ↦→ d , n ↦→ e }}

Applying this match reconstructs the right-hand side by
substituting x with d and n with e , yielding the expression
d * pow( d , e - 1). This new term is then inserted into
the e-graph as additional e-nodes and e-classes, connected
through a union to the match’s root e-class c .
Updating the e-graph is a sequential process as each e-

node insertion either adds a new e-class to the e-graph or
returns an existing e-class if the node is already in the graph.
This condition creates a sequential dependency between
match applications in prior approaches.
Unions are more flexible, and egg has found it beneficial

to defer e-graph invariant maintenance [34]. First, it applies
all matches, inserting e-nodes and recording unions, which
may temporarily break e-graph invariants. Once all matches
have been applied, egg rebuilds these invariants.
Foresight takes this idea one step further by deferring

match applications. Instead of updating the e-graph immedi-
ately, each match generates deferred commands that record
the necessary insertions and unions (Figure 2b, Line 3). The
advantage of deferring match application is that the genera-
tion of commands is arbitrarily parallelizable across matches.

4.3 Command Simplification and Batching

Commands are encoded in Static Single Assignment (SSA)
Form [6] over two operators: e-node insertions (add) and e-
class unions (union). For the example expression d * pow( d ,

e - 1) from the previous section, along with the other exam-
ple match application c + c from Figure 1, the sequence of
commands corresponds to Figure 3a.

The advantages of commands are twofold: commands are
simplified in parallel to reduce sequential application work



Parallel and Customizable Equality Saturation CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

1 def rewrite_sequential(egraph , rules):
2 matches = []
3 for r in rules:
4 for ecls in egraph.classes:
5 case egraph.matchAndCompress(r, ecls) of
6 Some(Match(data)):
7 matches.append(Match(data))
8 None:
9 continue
10

11 for match in matches:
12 egraph.apply(match)

(a) Classic saturation process. Highlighted methods mutate e-
graph data and must be executed sequentially.

1 def rewrite_parallel(egraph , rules):
2 matches = findMatches(rules , egraph.classes)
3 commands = computeUpdates(matches)
4 addCmds , unionCmds = simplifyAndBatch(
5 commands
6 )
7

8 return egraph.addMany(addCmds)
9 .unionMany(unionCmds)

(b) Foresight’s deferred saturation algorithm. Highlighted op-
erations are fully parallel over their inputs. The addMany and
unionMany methods are also partially parallelized.

Figure 2. Pseudo-code comparison of the rewriting algorithms. By default, equality saturation performs rewrites until fixpoint.

// first match
%0 = add (2)
%1 = add (pow d , %0)
%2 = add (mul d , %1)
union %2, c

// second match
%3 = add (plus c , c )
union %3, a

(a) Initial commands.

// first match
// (2) already in b

%1 = add (pow d , b )
%2 = add (mul d , %1)
union %2, c

// second match
%3 = add (plus c , c )
union %3, a

(b) After simplification.

plus

pow

mul

first
match

second
match

(c) Dependencies for
add commands.

pow plus

mul

batch 1

batch 2

(d)After batching.

// batch 1
%1 = add (pow d , b )
%3 = add (plus c , c )
// batch 2
%2 = add (mul d , %1)

union %2, c

union %3, a

(e) Reordered commands.

Figure 3. Command reordering from the matches in Figure 1.

and they are reordered into batches that allow for metadata
update parallelism. Simplification recognizes that certain
e-node additions and e-class unions are already in the e-
graph. For example, %0 = add (2) inserts an integer literal 2
into the e-graph, but this literal is already present. Updating
the instruction list from a parallel thread to pre-resolve this
insertion, as in Figure 3b, reduces the number of sequential
operations that will be applied to the e-graph.

Command reordering and batching formsmaximal batches
of add commands such that there are no dependencies be-
tween commands within a batch. For example, the depen-
dency graph for the simplified commands (Figure 3c) is di-
vided into the two batches from Figure 3d: one inserts pow

and plus nodes; the other inserts a mul node. The result of
reordering and batching is shown in Figure 3e.
Once created, each batch is applied to yield an updated

version of the e-graph.

5 Saturation Strategies

Equality saturation is traditionally implemented as a library-
defined loop that rewrites until convergence or a budget is ex-
ceeded. Foresight generalizes this with strategies: compos-
able building blocks for rewriting behaviors and termination.
This section shows how standard loops can be re-expressed.

5.1 From Loops to Strategies

The classic saturation loop, shown in Figure 4a, repeats
until a fixpoint is reached. Since this loop never terminates
for many applications, prior equality saturation tools offer
a built-in saturation function (Figure 4b) that generalizes
the above to include stopping conditions and rule sched-
uling [13, 34]. The stopping conditions are limited by the
library to hard budgets such as timeouts, node caps or itera-
tion caps; rule schedulers are customizable but are typically
either maximal rule application (apply each rule during each
rewriting iteration) or exponential backoff (each rule fires up
to a quota of matches, then cools down for several rounds;
both quota and cooldown expand after each cycle).

Foresight allows for more flexibility in how saturation is
choreographed by introducing saturation strategies. A strat-
egy declaratively describes the process of how to saturate
an e-graph. These declarations come in two flavors:

• base strategies specify the rewriting algorithm; and
• combinators build more complex strategies from sim-
pler building blocks.

The classic saturation loop, re-expressed as an Foresight
strategy in Figure 4c, is a single base strategy (maximal
rule application) followed by a combinator that runs it un-
til fixpoint. A more typical instantiation of a saturate call
would translate to Figure 4d. This strategy uses rewriting
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def saturate_naive(egraph , rules):
while true:

egraph ′ = rewrite(egraph , rules)
if egraph ′ == egraph:

return egraph ′

(a) Classic saturation loop.

def saturate(egraph , rules , condition , scheduler):
i = 0
while true:

egraph ′ = rewrite(egraph , scheduler(rules , i))
if egraph ′ == egraph or condition(egraph):

return egraph ′

i += 1

(b) Saturation with a scheduler and stopping condition.

strategy = MaximalRuleApplication(rules)
.repeatUntilStable

strategy(egraph)

(c) Figure 4a as an Foresight strategy.

strategy = BackoffRuleApplication(rules , n, c)
.withTimeout(timeout)
.withIterationLimit(iterationLimit)
.repeatUntilStable

strategy(egraph)

(d) Figure 4b with backoff scheduler, as an Foresight strategy.

Figure 4. Existing saturation behaviors and how they are expressed as strategies in Foresight.

1 def withIterationLimit(inner_strat , limit):
2 i = 0
3 def apply(egraph):
4 i += 1
5 if i < limit:
6 return inner_strat(egraph)
7 return None
8 return apply

Figure 5. Pseudocode implementation of withIterationLimit.

with a backoff scheduler and installs a timeout and iteration
limit. Each of these limits becomes an additional combinator,
chained to the previous strategy.

5.2 Core Interface

Foresight comes with a rich set of predefined strategies. Its
base strategies implement maximal rule application, backoff
scheduling, and stochastic application of matches. Built-in
combinators compose strategies; repeat until fixpoint; install
resource budgets; perform rebasing; augment e-graphs with
additional analyses and metadata; and attach logging hooks.
A strategy is conceptually a higher order function that

takes optional configuration parameters and returns a func-
tion of type EGraph → EGraph | None. Each strategy returns
a function that either yields an updated e-graph or None. Re-
turning None signals that a fixed point or stopping condition
has been reached. Combinator strategies are configured by
passing an inner strategy to apply. For example, Figure 5 im-
plements the withIterationLimit combinator by extending an-
other strategy with a counter. As syntactic sugar, the strategy
examples in this paper use a dot syntax to simplify chaining,
such that foo(a, ...rest) is equivalent to a.foo(...rest).
Once constructed, a top-level strategy is applied to an

e-graph by invoking it with its initial data, which is the
default unless other data is specific. Other data only appears
during strategy execution as a consequence of repetition
combinators.

6 Generalized Metadata

Prior work supports metadata in the form of e-class anal-
yses [34]. These analyses compute auxiliary information,
such as constant folding results or type information, for each
e-class. E-Class analyses operate on values that form a lat-
tice [5], a common structure in static program analysis that
provides a join function to merge information from multi-
ple sources. A new value from a lattice is constructed with
each e-node insertion, then values are propagated upward
through the e-graph via the join function.
While effective for many applications, this design ties

metadata to a single lattice structure. As a result, composing
multiple analyses becomes cumbersome and customization
beyond the lattice itself becomes impossible.
Foresight generalizes metadata support by allowing ar-

bitrary, extensible annotations on the e-graph. Concretely,
metadata in Foresight is formulated as a stateful observer
via a callback mechanism that responds to the results of
e-node insertions and e-class unions:
1 interface Metadata:
2 def onAddMany(added: Seq[(ENode , EClass)],
3 after: EGraph) -> Metadata
4 def onUnionMany(equivalences: Set[Set[EClass

]],
5 after: EGraph) -> Metadata

The two observer callbacks encapsulate how metadata
reacts to structural updates in the e-graph.

• onAddMany is invoked after a batch of e-node inser-
tions has been applied. Metadata is computed as a
function of the updated e-graph, e.g., to initialize an-
notations for fresh e-classes.

• onUnionMany is invoked after a batch of e-class unions
has been materialized. This hook reconciles metadata
acrossmerged e-classes, e.g., by combining e-class anal-
ysis facts.

When multiple types of metadata are attached to the same
e-graph, these callbacks are invoked in parallel for each type
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of metadata. The rest of this section shows how Foresight’s
generalized metadata seamlessly supports both standard e-
class analyses and e-class versions, a use case that standard
analyses cannot express.

6.1 Analyses as Metadata

Foresight supports e-class analyses by formulating them as
metadata, mapping e-classes to lattice values. Full implemen-
tation details are provided in the supplementary material.
The onAddMany callback initializes lattice values in par-

allel using make, whenever new nodes are inserted. The
onUnionMany callback reconciles facts when e-classes are
merged: it queries the e-graph’s union-find for the leader
e-class of the merged classes, combines all incoming facts
with the join user-defined function, and then propagates
the updated information upward.
Together, these two callbacks encapsulate e-class analy-

sis updates, maintaining the analysis automatically as the
e-graph evolves. Encoding analyses this way separates con-
cerns: instead of interleaving analysis updates into the e-
graph invariant maintenance algorithm, as prior approaches
have done [34], expressing analyses as metadata simplifies
analysis updates to an encapsulated metadata update after
each e-graph update.

6.2 E-Class Versions as Metadata

Certain information cannot be represented as e-class analy-
ses. For instance, recent work on incremental equality satu-
ration relies on e-class versions to restrict equality saturation
to the latest term added to an e-class [24]. These versions
consist of one integer per e-class, identifying the term that
was being processed when an e-class was inserted. Versions
are not a function of e-node structure, nor do they propa-
gate through the e-graph, making them ill-suited for e-class
analyses and leading the designers of incremental equality
saturation to fork egg to embed versions in e-classes.
In contrast, Foresight’s metadata elegantly encodes e-

class versions as metadata, with implementation details pro-
vided in the supplementary material. The onAddMany imple-
mentation sets the version of newly-inserted e-classes (typi-
cally inserted through rewriting rather than user action) to
the version of the latest term being processed. onUnionMany
defines the version of a union of e-classes as the minimum
of those e-classes’ versions but does not propagate this in-
formation upwards. Finally, a method onAddNewTerm allows
user code to signal that a new term has been inserted into
the e-graph, resulting in a new version that is assigned to all
e-classes in the term.

7 Case Studies and Evaluation

This section describes four case studies that evaluate dif-
ferent aspects of Foresight’s design. The first case study,
Horner’s method and matrix associativity, are established

Table 1. Memory usage comparison of the Java heap size
used by Foresight and peak resident set size used by egg.
Foresight is run in parallel with 8 threads.

Kernel Foresight Heap Size egg RSS

Horner 40 MB 4 MB
20mm 17 MB 3 MB
40mm 21 MB 4 MB
80mm 55 MB 13 MB

benchmarks [36] and that verify Foresight’s correctness
against existing tools. The next case study, latent idiom recog-
nition, reimplements LIAR, a complex EqSat-based system
in Scala [29]. This enables a comparison on a real-life use
case with an EqSat implementation in the same program-
ming language. A third case study demonstrates how Fore-
sight’s strategies significantly reduce the engineering effort
of expressing custom saturation loops found in the litera-
ture [7, 27]. The final use case implements incremental equal-
ity saturation [24] to demonstrate generalized metadata.

7.1 Experimental Setup

Foresight is an open-source Scala library that implements
the ideas presented in this paper in addition to slotted e-
graphs [21]. Foresight supports both Scala 2 and 3. Case
studies 1, 2 and 5 use Scala 3.4.1 for its metaprogramming
facilities; the remainder use Scala 2.12.19 for LIAR infrastruc-
ture compatibility.
All compilation is conducted on an Ubuntu 24.04 system

with an Intel Xeon Gold 6254 CPU processor. Compiled
benchmarks are run on a desktop machine (Intel Core i7-
12700K) to reflect typical user setups. Unless otherwise stated,
each experiment uses 8 threads for Foresight. The exper-
imental setup for the comparisons against other libraries
uses egg [34] version 0.10.0, slotted [21] version 0.0.35,
and hegg [13] version 0.5.0.0. For egglog comparisons, the
latest development version available at the time of writing is
used (commit ef90b97). The matrix associativity benchmarks
uses egglog-experimental (commit 908c47d) for its support
of dynamic cost functions.

7.2 Horner’s Method and Matrix Associativity

This section confirms Foresight’s correctness by applying
it to classical optimization benchmarks: Horner’s method
and matrix associativity. These have previously been demon-
strated [36] to be effective equality saturation library tests.
Applying Horner’s method optimizes the computational

complexity of polynomial evaluation by eliminating expo-
nentiation operations and minimizing multiplications by
rewriting it in the nested form shown below. While the
naive approach requires 𝑛(𝑛 + 1)/2 multiplications and 𝑛

additions, applying Horner’s method reduces this to only 𝑛
multiplications and 𝑛 additions.

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛𝑥

𝑛

𝑃 (𝑥) = 𝑎0 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + · · · + 𝑥 (𝑎𝑛−1 + 𝑥𝑎𝑛)))
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Figure 6. Comparison of saturation time across many imple-
mentations of equality saturation. For. (S) and For. (P) refer
to sequential and parallel Foresight. The baseline is egg.

Horner’s method is derived through eight rewrite rules:
commutative and associative properties to rearrange terms,
distributive properties to factor common subexpressions, a
recursive exponentiation rule to decompose powers, and
algebraic identities for simplification. The cost function pri-
oritizes multiplication over exponential operations, and ad-
dition over multiplication operations.
Foresight discovers Horner’s method as expected and

Figure 6 shows the saturation times compared to other li-
braries, normalized against the egg library baseline. Across
all benchmarks, parallel Foresight shows faster saturation
than the sequential Foresight, hegg and slotted imple-
mentations. This performance advantage stems from parallel
e-matching where the search for all eight rules can proceed
concurrently across the e-graph, a particularly beneficial
optimization given that the saturated e-graph contains 1260
e-nodes. Foresight’s effectiveness becomes even more pro-
nounced as saturation approaches the fixed point. At this
stage, most right-hand sides of rewrites are already in the
e-graph, rendering subsequent rewrite applications no-ops.
Foresight’s command simplification exploits this conver-
gence pattern and reduces the sequential work required dur-
ing command application, explaining the performance gains
observed. egg consistently outperforms Foresight in ab-
solute saturation time on these benchmarks; the difference
is explained by implementation-level factors. In particular,
Foresight’s object-heavy JVM implementation uses signifi-
cantly more memory than egg’s Rust implementation (Ta-
ble 1), whereas algorithmically Foresight’s only additional
memory use is for storing deferred commands.

Similarly, the associativity of matrix multiplication is used
to find the optimal association of a chain of matrix multiplica-
tions. This optimization requires only two rewrite rules—the
associative property—and a cost function that measures the
number of scalar multiplications. Foresight finds the opti-
mal association for the tested chains of 20, 40 and 80 matrix
multiplications and Figure 6 shows the saturation times. Both

Table 2. BLAS idioms where Foresight finds a better solu-
tion than LIAR. In all other cases, the solutions are identical.
Benchmark run time speedups (Sp.) vary from 1× to 10×.

Kernel LIAR solution Foresight solution Sp.

2mm 3 × axpy + 2 × gemv
+ 4 × memset

2 × gemm + 1 × memset
+ 1 × transpose

3×

gemm 3 × axpy + 1 × gemv
+ 3 × memset

1 × gemm + 1 × transpose 10×

slim-2mm 1 × gemm + 1 × gemv
+ 2 × memset
+ 1 × transpose

2 × gemm + 2 × memset
+ 2 × transpose

1×

sequential and parallel Foresight outperform the highly-
optimized egglog library on 20mm and 40m; on 80mm, Fore-
sight’s parallelism is the deciding factor in speeding past
egglog. Slowdowns relative to egg are again explained by
the increased memory use in Table 1.

7.3 Latent Idiom Recognition

To evaluate Foresight on a larger application, this section
reimplements LIAR [29], a technique that recognizes array
idioms using equality saturation. As both implementations
are in Scala, this case study demonstrates the advantages of
Foresight when compared to the existing Scala landscape
and shows how Foresight integrates into the larger SHIR
compiler infrastructure [20] on which LIAR is based.

Using Foresight, we rebuilt LIAR with significantly less
effort, leveraging slotted e-graphs and high-level rewrite
APIs. Slotted e-graphs eliminate the need for LIAR’s orig-
inal De Bruijn machinery, enabling variable binding to be
expressed declaratively and managed directly in the e-graph
structure. LIAR’s type inference, originally implemented as a
built-in component of its equality saturation engine, is imple-
mented using Foresight as an e-class analysis. Additionally,
LIAR e-graphs are equipped with an extraction e-class analy-
sis to support an extraction-based beta-reduction rule [9, 34].
Foresight has built-in support for extraction analyses and
its rewriting engine runs analyses in parallel.
Two experiments evaluate the Foresight reimplementa-

tion of LIAR: 1. replicating LIAR’s idiom recognition evalua-
tion targeting BLAS libraries using the same set of PolyBench
benchmark kernels, and 2. rerunning the same evaluation
with varying thread counts to examine the scaling behavior
of Foresight’s parallel architecture.

7.3.1 Idiom Quality and Saturation Speed. Table 2 and
Figure 7 summarize the results of the first experiment. Fore-
sight exceeds the idiom recognition capabilities of the orig-
inal LIAR engine and is faster.
Given the same number of saturation iterations, Fore-

sight identifies equally or more idiomatic solutions than
LIAR. For example, in 2mm, the baseline emits a composition
of axpy, dot, gemv, and memset calls, while Foresight’s re-
sult is a concise sequence of gemm, memset, and transpose,
reflecting higher-quality idiom recognition that results in
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Figure 7. Saturation speedups of Foresight relative to the
original LIAR engine across BLAS benchmarks.

a 3× run time speedup on the 2mm benchmark and 10× on
gemm. The new slim-2mm solution is performance-neutral.

These higher-quality results are also found faster: Figure 7
shows that Foresight achieves a geometric mean total sat-
uration speedup of almost 16×. Total speedups vary across
benchmarks due to differences in e-graph size as slotted
e-graphs expose additional equivalences and eliminate De
Bruijn shift rules, which results in both smaller or larger
graphs depending on the benchmark. Speedups nonethe-
less remain consistently strong, indicating a more efficient
rewrite engine regardless of graph size.

7.3.2 Parallel Scalability. Figure 8 presents results from
the second experiment, in which the BLAS evaluation is re-
run with varying thread counts to assess internal scalability.
Speedup is reported for several core saturation operations.
Rule matching and rule application scale near-linearly,

benefiting from deferred, batched updates and thread-safe
graphs. Metadata propagation via addMany and unionMany
also benefits from parallelism, though with different scal-
ing characteristics. The addMany metadata step continues
to improve at higher thread counts due to parallelization
across both metadata types and individual e-node additions.
In contrast, the unionMany metadata step plateaus once the
number of threads exceeds the number of active metadata
analyses, restricting further speedup.
The overall saturation speedup for the LIAR stencil2d

benchmark levels off at 1.7×, reflecting the interplay between
the scalable e-matching, command generation and e-node
metadata components, the moderately parallelizable meta-
data union phase, and the sequential nature of hashcons
updates. At higher thread counts, these sequential compo-
nents dominate: at eight threads, e-class unification is 30%
of total time. This explains the plateau in total throughput.
These results confirm that Foresight’s architecture en-

ables efficient and fine-grained parallelism for most rewrite
and analysis tasks, with scalability bounded by the intrinsic
parallelism available in each phase. Results are application-
specific; stencil2d obtains a speedup of 1.7×, while 80mm
from the previous section obtains a 2.6× speedup.
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Figure 8. Parallel speedup across individual components of
Foresight’s equality saturation engine for the stencil2d ker-
nel. Rulematching and application scale effectively. Metadata
updates scale partially, while hashconsing stays sequential.

7.4 Existing Scalability Strategies (Applied to LIAR)

This section demonstrates the flexibility of Foresight’s com-
posable strategy system by showing how to express two sat-
uration strategies from prior work: the phased pipeline from
Isaria [27] and a multi-round EqSat schedule that was pre-
viously applied to symbolic regression [7, 14]. Where both
original systems are built around monolithic EqSat runners,
the equivalent Foresight implementations are each 10 or
fewer lines of readable code.

7.4.1 Isaria (phased + prune-and-rebase). Isaria is an
equality saturation–based auto-vectorization framework that
has three types of rewrite rules: 1. expansion rules, which
turn smaller expressions into larger expressions; 2. simplifi-
cation rules, which turn larger expressions into smaller ones;
and 3. vectorization rules, which replace expressions with
vector instructions. To keep equality saturation tractable, its
saturation strategy is to repeatedly interleave expansion, sim-
plification, and pruning of intermediate search states. This
pruning is done via rebasing, which replaces the e-graph
with a single extracted expression. After repeated expan-
sion, simplification and rebasing, Isaria applies a single pass
of vectorization rules. Intuitively, expansion–simplification–
vectorization phases separate exploration from exploitation;
rebasing curbs e-graph growth.

In Foresight, we capture Isaria’s strategy with per-phase
budgets, fixed-point loops, and periodic rebasing.
1 def phase(rules: Seq[Rule]):
2 MaximalRuleApplication(rules)
3 .withTimeout(phaseTimeout)
4 .repeatUntilStable
5 phase(expansionRules)
6 .thenApply(phase(simplificationRules))
7 .withTimeout(expansionAndSimplTimeout)
8 .thenRebase(extractor , areEquivalent)
9 .repeatUntilStable
10 .thenApply(phase(idiomRules))
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Figure 9. Run time speedup of Foresight’s solutions compared to baseline LIAR solutions. Each bar represents the ratio of
the baseline run time and the Foresight solution run time. Higher is better.

The original Isaria driver reports 819 lines of Rust code
(excluding whitespace/comments) [27], whereas the port
above uses a handful of composable combinators whose
parameters expose the same operational levers.

7.4.2 SymPy (bounded + backoff + multi-round). De
França and Kronberger [7] use equality saturation to re-
duce redundant fitted parameters in symbolic regression and
report consistently better results than SymPy’s simplifier.
Below, we encode their bounded, conservatively scheduled
equality saturation as a first-class Foresight strategy with
per-iteration budgets, cooldown-style backoff, periodic ex-
traction, and multiple rounds of saturation. For brevity, we
refer to this strategy SymPy, but it denotes the EqSat-based
bounded-scheduler pipeline that was compared to SymPy’s
simplifier [7, 14].
1 BackoffRuleApplication(rules , n, coolOff)
2 .withIterationLimit(iterationLimit)
3 .repeatUntilStable
4 .thenRebase(extractor)
5 .withIterationLimit(cycles)
6 .repeatUntilStable

7.4.3 Scalability Strategy Results. Figure 9 shows how
the Isaria and SymPy strategies carry over to LIAR. The plot
reports benchmark run times relative to the original LIAR
baseline. Foresight with a standard EqSat loop consistently
matches or outperforms the baseline. SymPy excels on atax,
gemm, jacobi1d, and slim-2mm, but times out (slower than
60s) on blur1d and stencil2d. Conversely, Isaria does well on
blur1d and stencil2d but performs poorly on other kernels.

7.5 Incremental Equality Saturation

This section shows that generalized metadata allows Fore-
sight to support use cases not covered by existing equality
saturation libraries. This is demonstrated by implementing
incremental equality saturation, based on the e-class version
metadata from Section 6.2.

Incremental equality saturation [24] is a recent technique
that efficiently optimizes a sequence of input expressions.
This efficiency is due to reusing a single evolving e-graph
across optimization runs, extending the structure-sharing
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Figure 10. Saturation time of incremental vs standard EqSat.
Inputs are identical; saturation uses one thread.

benefits of equality saturation temporally. Each e-class in
that e-graph is tagged with a version number, and rewrites
are applied only to e-classes relevant to the current ver-
sion, avoiding redundant exploration while remembering
previously-discovered facts. Existing equality saturation li-
braries do not have a mechanism to support e-class versions.
Previous experiments with incremental equality saturation
hence depended on a specialized fork of egg.
Foresight’s metadata allows for e-class versions to be

implemented without library modifications, as described
in Section 6.2. Leveraging e-class versions to implement
incremental equality saturation, Figure 10 reproduces the
expected behavior by applying incremental saturation to
increasingly long sequences of randomly generated polyno-
mial expressions. Saturating these expressions incrementally
is much more efficient than saturating them individually,
indicating that the Foresight-based incremental saturation
implementation satisfactorily reuses previous knowledge.

8 Related Work

Existing equality saturation libraries such as egg [34] and
egglog [37] are finely tuned frameworks suitable for practi-
cal equality saturation applications. Other implementations
target specific use cases: hegg [13] provides equality sat-
uration support for Haskell, while slotted [21] adds na-
tive support for variable bindings. Foresight’s e-graphs are
also slotted, simplifying binders. Design decisions in the
aforementioned libraries limit parallelism and inhibit cus-
tomizable saturation techniques, which has led numerous
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projects to fork these libraries or layer custom code on top of
them [7, 24, 27]. Foresight’s strategies and metadata suffice
to express this custom behavior without library changes.

E-morphic [3] parallelizes extraction using simulated an-
nealing, which is useful when rewriting is cheap and extrac-
tion is expensive. This is orthogonal to Foresight’s parallel
rewriting, which is useful when rewriting is expensive.

Relational E-Matching [38] reformulates E-Matching as re-
lational queries. egglog and hegg use relational e-matching;
egg and Foresight use standard e-matching [15]. Relational
e-matching is orthogonal to the parallel search and deferred
updates in this work.

Constable [32] segments e-graphs into slices that are pro-
cessed independently. This scalability mitigation is orthogo-
nal to the ideas presented in this work and could be imple-
mented as a scalability strategy in future work.

A flurry of recent techniques explore integrating equality
saturation with larger systems, e.g., Julia and MLIR [11, 12,
32, 36]. While integration with production compilers is not
the primary focus of this work, Section 7.3 demonstrates
that its contributions enable customizable, extensible, and
performant integration with existing compiler infrastructure.

9 Conclusion

This paper has presented Foresight, an equality saturation
library that prioritizes flexibility and parallelism. Foresight
aims to enable innovation in equality saturation research by
exposing a set of composable building blocks (flexible satura-
tion strategies and generalized metadata) for implementing
custom saturation techniques. These building blocks natu-
rally express recent approaches such as incremental equality
saturation [24] and multi-phase, rebased saturation [7, 27].

Despite this focus on extensibility, Foresight consistently
outperforms hegg and slotted, which are also implemented
in a high-level language and also support slotted e-graphs,
respectively. When parallelism is enabled, Foresight lever-
ages its deferred approach to rewriting to outperform egglog
on workloads that benefit from concurrent rewriting. The
highly-optimized egg engine remains faster than Foresight
across all evaluated benchmarks, reflecting its emphasis on
single-threaded performance and minimal memory use.

Looking forward, Foresight’s metadata system provides
a promising foundation for proof reconstruction. By record-
ing the provenance of e-class merges, such as whether they
arise from congruence closure or from specific rewrite rule
applications, metadata can encode the information needed
to reconstruct equational proofs after saturation.

10 Data Availability Statement

The software and data that support the findings of this paper
are released within Zenodo [30] under a CC-BY 4.0 license.
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